Global Sobolev regularity for nonvariational operators built with homogeneous Hörmander vector fields (2312.15367v2)
Abstract: We consider a class of nonvariational degenerate elliptic operators of the kind [ Lu=\sum_{i,j=1}{m}a_{ij}\left( x\right) X_{i}X_{j}u ] where $\left{ a_{ij}\left( x\right) \right} {i,j=1}{m}$ is a symmetric uniformly positive matrix of bounded measurable functions defined in the whole $\mathbb{R}{n}$ ($n>m$), possibly discontinuos but satisfying a $VMO$ assumption, and $X{1},...,X_{m}$ are real smooth vector fields satisfying H\"{o}rmander rank condition in the whole $\mathbb{R}{n}$ and $1$-homogeneous w.r.t. a family of nonisotropic dilations. We do not assume that the vector fields are left invariant w.r.t. an underlying Lie group of translations. We prove global $W_{X}{2,p}$ a-priori estimates, for every $p\in\left( 1,\infty\right) $, of the kind: [ \Vert u\Vert_{W_{X}{2,p}(\mathbb{R}{n})}\leq c\left{ \left\Vert Lu\right\Vert {L{p}\left( \mathbb{R}{n}\right) }+\left\Vert u\right\Vert _{L{p}\left( \mathbb{R}{n}\right) }\right} ] for every $u\in W{X}{2,p}\left( \mathbb{R}{n}\right).$ We also prove higher order estimates and corresponding regularity results: if $a_{ij}\in W_{X}{k,\infty}\left( \mathbb{R}{n}\right) $, $u\in W_{X}{2,p}\left( \mathbb{R}{n}\right) $, $Lu\in W_{X}{k,p}\left( \mathbb{R}{n}\right) $, then $u\in W_{X}{k+2,p}\left( \mathbb{R}{n}\right) $ and [ \Vert u\Vert_{W_{X}{k+2,p}(\mathbb{R}{n})}\leq c\left{ \Vert Lu\Vert_{W_{X}{k,p}(\mathbb{R}{n})}+\Vert u\Vert_{L{p}(\mathbb{R}{n} )}\right} . ]