Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Progressive Depth Decoupling and Modulating for Flexible Depth Completion (2405.09342v1)

Published 15 May 2024 in cs.CV

Abstract: Image-guided depth completion aims at generating a dense depth map from sparse LiDAR data and RGB image. Recent methods have shown promising performance by reformulating it as a classification problem with two sub-tasks: depth discretization and probability prediction. They divide the depth range into several discrete depth values as depth categories, serving as priors for scene depth distributions. However, previous depth discretization methods are easy to be impacted by depth distribution variations across different scenes, resulting in suboptimal scene depth distribution priors. To address the above problem, we propose a progressive depth decoupling and modulating network, which incrementally decouples the depth range into bins and adaptively generates multi-scale dense depth maps in multiple stages. Specifically, we first design a Bins Initializing Module (BIM) to construct the seed bins by exploring the depth distribution information within a sparse depth map, adapting variations of depth distribution. Then, we devise an incremental depth decoupling branch to progressively refine the depth distribution information from global to local. Meanwhile, an adaptive depth modulating branch is developed to progressively improve the probability representation from coarse-grained to fine-grained. And the bi-directional information interactions are proposed to strengthen the information interaction between those two branches (sub-tasks) for promoting information complementation in each branch. Further, we introduce a multi-scale supervision mechanism to learn the depth distribution information in latent features and enhance the adaptation capability across different scenes. Experimental results on public datasets demonstrate that our method outperforms the state-of-the-art methods. The code will be open-sourced at this https URL.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (54)
  1. H. Basak, S. Ghosal, M. Sarkar, M. Das, and S. Chattopadhyay, “Monocular depth estimation using encoder-decoder architecture and transfer learning from single rgb image,” in 2020 IEEE 7th Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON).   IEEE, 2020, pp. 1–6.
  2. S. Yang, Z. Wang, G. Yu, B. Zhou, P. Chen, S. Wang, and Q. Zhang, “Raildepth: A self-supervised network for railway depth completion based on a pooling-guidance mechanism,” IEEE Transactions on Instrumentation and Measurement, 2023.
  3. M. Shen, Z. Wang, S. Su, C. Liu, and Q. Chen, “Dna-depth: A frequency-based day-night adaptation for monocular depth estimation,” IEEE Transactions on Instrumentation and Measurement, 2023.
  4. X. Liu, W. Wei, C. Liu, Y. Peng, J. Huang, and J. Li, “Real-time monocular depth estimation merging vision transformers on edge devices for aiot,” IEEE Transactions on Instrumentation and Measurement, vol. 72, pp. 1–9, 2023.
  5. V. Patil, C. Sakaridis, A. Liniger, and L. Van Gool, “P3depth: Monocular depth estimation with a piecewise planarity prior,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 1610–1621.
  6. F. Ma and S. Karaman, “Sparse-to-dense: Depth prediction from sparse depth samples and a single image,” in 2018 IEEE international conference on robotics and automation (ICRA).   IEEE, 2018, pp. 4796–4803.
  7. M. Cui, Y. Zhu, Y. Liu, Y. Liu, G. Chen, and K. Huang, “Dense depth-map estimation based on fusion of event camera and sparse lidar,” IEEE Transactions on Instrumentation and Measurement, vol. 71, pp. 1–11, 2022.
  8. C. Fu, C. Dong, C. Mertz, and J. M. Dolan, “Depth completion via inductive fusion of planar lidar and monocular camera,” in 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2020, pp. 10 843–10 848.
  9. J. Tang, F.-P. Tian, W. Feng, J. Li, and P. Tan, “Learning guided convolutional network for depth completion,” IEEE Transactions on Image Processing, vol. 30, pp. 1116–1129, 2020.
  10. L. Liu, X. Song, X. Lyu, J. Diao, M. Wang, Y. Liu, and L. Zhang, “Fcfr-net: Feature fusion based coarse-to-fine residual learning for depth completion,” in Proceedings of the AAAI conference on artificial intelligence, vol. 35, no. 3, 2021, pp. 2136–2144.
  11. A. Li, Z. Yuan, Y. Ling, W. Chi, C. Zhang et al., “A multi-scale guided cascade hourglass network for depth completion,” in Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2020, pp. 32–40.
  12. X. Cheng, P. Wang, and R. Yang, “Depth estimation via affinity learned with convolutional spatial propagation network,” in Proceedings of the European Conference on Computer Vision (ECCV), 2018, pp. 103–119.
  13. X. Cheng, P. Wang, C. Guan, and R. Yang, “Cspn++: Learning context and resource aware convolutional spatial propagation networks for depth completion,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, no. 07, 2020, pp. 10 615–10 622.
  14. Y. Lin, T. Cheng, Q. Zhong, W. Zhou, and H. Yang, “Dynamic spatial propagation network for depth completion,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, no. 2, 2022, pp. 1638–1646.
  15. S. Zhao, M. Gong, H. Fu, and D. Tao, “Adaptive context-aware multi-modal network for depth completion,” IEEE Transactions on Image Processing, vol. 30, pp. 5264–5276, 2021.
  16. Y. Zhang and T. Funkhouser, “Deep depth completion of a single rgb-d image,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 175–185.
  17. J. Qiu, Z. Cui, Y. Zhang, X. Zhang, S. Liu, B. Zeng, and M. Pollefeys, “Deeplidar: Deep surface normal guided depth prediction for outdoor scene from sparse lidar data and single color image,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 3313–3322.
  18. Y. Xu, X. Zhu, J. Shi, G. Zhang, H. Bao, and H. Li, “Depth completion from sparse lidar data with depth-normal constraints,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, pp. 2811–2820.
  19. M. Jaritz, R. De Charette, E. Wirbel, X. Perrotton, and F. Nashashibi, “Sparse and dense data with cnns: Depth completion and semantic segmentation,” in 2018 International Conference on 3D Vision (3DV).   IEEE, 2018, pp. 52–60.
  20. C. Zhang, Y. Tang, C. Zhao, Q. Sun, Z. Ye, and J. Kurths, “Multitask gans for semantic segmentation and depth completion with cycle consistency,” IEEE Transactions on Neural Networks and Learning Systems, vol. 32, no. 12, pp. 5404–5415, 2021.
  21. B.-U. Lee, K. Lee, and I. S. Kweon, “Depth completion using plane-residual representation,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 13 916–13 925.
  22. J. Kam, J. Kim, S. Kim, J. Park, and S. Lee, “Costdcnet: Cost volume based depth completion for a single rgb-d image,” in Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part II.   Springer, 2022, pp. 257–274.
  23. H. Fu, M. Gong, C. Wang, K. Batmanghelich, and D. Tao, “Deep ordinal regression network for monocular depth estimation,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp. 2002–2011.
  24. S. F. Bhat, I. Alhashim, and P. Wonka, “Adabins: Depth estimation using adaptive bins,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 4009–4018.
  25. R. Peng, T. Zhang, B. Li, and Y. Wang, “Pixelwise adaptive discretization with uncertainty sampling for depth completion,” in Proceedings of the 30th ACM International Conference on Multimedia, 2022, pp. 3926–3935.
  26. J. Uhrig, N. Schneider, L. Schneider, U. Franke, T. Brox, and A. Geiger, “Sparsity invariant cnns,” in 2017 international conference on 3D Vision (3DV).   IEEE, 2017, pp. 11–20.
  27. N. Chodosh, C. Wang, and S. Lucey, “Deep convolutional compressed sensing for lidar depth completion,” in Computer Vision–ACCV 2018: 14th Asian Conference on Computer Vision, Perth, Australia, December 2–6, 2018, Revised Selected Papers, Part I 14.   Springer, 2019, pp. 499–513.
  28. A. Eldesokey, M. Felsberg, and F. S. Khan, “Propagating confidences through cnns for sparse data regression,” arXiv preprint arXiv:1805.11913, 2018.
  29. Y. Zhong, C.-Y. Wu, S. You, and U. Neumann, “Deep rgb-d canonical correlation analysis for sparse depth completion,” Advances in Neural Information Processing Systems, vol. 32, 2019.
  30. Z. Yan, K. Wang, X. Li, Z. Zhang, J. Li, and J. Yang, “Rignet: Repetitive image guided network for depth completion,” in Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXVII.   Springer, 2022, pp. 214–230.
  31. G. Hegde, T. Pharale, S. Jahagirdar, V. Nargund, R. A. Tabib, U. Mudenagudi, B. Vandrotti, and A. Dhiman, “Deepdnet: Deep dense network for depth completion task,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 2190–2199.
  32. L. Liu, Y. Liao, Y. Wang, A. Geiger, and Y. Liu, “Learning steering kernels for guided depth completion,” IEEE Transactions on Image Processing, vol. 30, pp. 2850–2861, 2021.
  33. Z. Xu, H. Yin, and J. Yao, “Deformable spatial propagation networks for depth completion,” in 2020 IEEE International Conference on Image Processing (ICIP).   IEEE, 2020, pp. 913–917.
  34. M. Hu, S. Wang, B. Li, S. Ning, L. Fan, and X. Gong, “Penet: Towards precise and efficient image guided depth completion,” in 2021 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2021, pp. 13 656–13 662.
  35. Y. Zhang, X. Guo, M. Poggi, Z. Zhu, G. Huang, and S. Mattoccia, “Completionformer: Depth completion with convolutions and vision transformers,” in CVPR, 2023.
  36. Z. Li, X. Wang, X. Liu, and J. Jiang, “Binsformer: Revisiting adaptive bins for monocular depth estimation,” arXiv preprint arXiv:2204.00987, 2022.
  37. S. F. Bhat, I. Alhashim, and P. Wonka, “Localbins: Improving depth estimation by learning local distributions,” in Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part I.   Springer, 2022, pp. 480–496.
  38. Q. Zhang, J. Hou, Y. Qian, Y. Zeng, J. Zhang, and Y. He, “Flattening-net: Deep regular 2d representation for 3d point cloud analysis,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023.
  39. H. Fan, H. Su, and L. J. Guibas, “A point set generation network for 3d object reconstruction from a single image,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 605–613.
  40. N. Silberman, D. Hoiem, P. Kohli, and R. Fergus, “Indoor segmentation and support inference from rgbd images.” ECCV (5), vol. 7576, pp. 746–760, 2012.
  41. A. Dai, A. X. Chang, M. Savva, M. Halber, T. Funkhouser, and M. Nießner, “Scannet: Richly-annotated 3d reconstructions of indoor scenes,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 5828–5839.
  42. A. Eldesokey, M. Felsberg, and F. S. Khan, “Confidence propagation through cnns for guided sparse depth regression,” IEEE transactions on pattern analysis and machine intelligence, vol. 42, no. 10, pp. 2423–2436, 2019.
  43. A. Conti, M. Poggi, and S. Mattoccia, “Sparsity agnostic depth completion,” in Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2023, pp. 5871–5880.
  44. W. Yuan, X. Gu, Z. Dai, S. Zhu, and P. Tan, “Neural window fully-connected crfs for monocular depth estimation,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 3916–3925.
  45. S. Imran, Y. Long, X. Liu, and D. Morris, “Depth coefficients for depth completion,” in 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).   IEEE, 2019, pp. 12 438–12 447.
  46. D. Tran, N. Ahlgren, C. Depcik, and H. He, “Adaptive active fusion of camera and single-point lidar for depth estimation,” IEEE Transactions on Instrumentation and Measurement, 2023.
  47. D. Nazir, A. Pagani, M. Liwicki, D. Stricker, and M. Z. Afzal, “Semattnet: Toward attention-based semantic aware guided depth completion,” IEEE Access, vol. 10, pp. 120 781–120 791, 2022.
  48. F. Ma, G. V. Cavalheiro, and S. Karaman, “Self-supervised sparse-to-dense: Self-supervised depth completion from lidar and monocular camera,” in 2019 International Conference on Robotics and Automation (ICRA).   IEEE, 2019, pp. 3288–3295.
  49. A. W. Bergman, D. B. Lindell, and G. Wetzstein, “Deep adaptive lidar: End-to-end optimization of sampling and depth completion at low sampling rates,” in 2020 IEEE international conference on computational photography (ICCP).   IEEE, 2020, pp. 1–11.
  50. E. Gofer, S. Praisler, and G. Gilboa, “Adaptive lidar sampling and depth completion using ensemble variance,” IEEE Transactions on Image Processing, vol. 30, pp. 8900–8912, 2021.
  51. I. Tcenov and G. Gilboa, “How to guide adaptive depth sampling?” arXiv preprint arXiv:2205.10202, 2022.
  52. Q. Dai, F. Li, O. Cossairt, and A. K. Katsaggelos, “Adaptive illumination based depth sensing using deep superpixel and soft sampling approximation,” IEEE Transactions on Computational Imaging, vol. 8, pp. 224–235, 2022.
  53. A. Shomer and S. Avidan, “Prior based sampling for adaptive lidar,” arXiv preprint arXiv:2304.07099, 2023.
  54. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 770–778.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube