Exact analysis of the two-dimensional asymmetric simple exclusion process with attachment and detachment of particles (2405.09261v1)
Abstract: The asymmetric simple exclusion process (ASEP) is a paradigmatic driven-diffusive system that describes the asymmetric diffusion of particles with hardcore interactions in a lattice. Although the ASEP is known as an exactly solvable model, most exact results are limited to one-dimensional systems. Recently, the exact steady state in the multi-dimensional ASEP has been proposed [1]. The research focused on the situation where the number of particles is conserved. In this paper, we consider the two-dimensional ASEP with the attachment and detachment of particles (ASEP-LK), where particle number conservation is violated. By employing the result in Ref. [1], we construct the exact steady state of the ASEP-LK and reveal its properties through the exact computation of physical quantities.
- Ishiguro Y and Sato J 2024 Exact steady states in the asymmetric simple exclusion process beyond one dimension arXiv preprint arXiv:2403.01934
- MacDonald C T, Gibbs J H and Pipkin A C 1968 Kinetics of biopolymerization on nucleic acid templates Biopolymers 6 1–25
- Klumpp S and Lipowsky R 2003 Traffic of molecular motors through tube-like compartments J. Stat. Phys. 113 233–268
- Schadschneider A 2000 Statistical physics of traffic flow Physica A 285 101–120
- Schadschneider A, Chowdhury D and Nishinari K 2010 Stochastic transport in complex systems: from molecules to vehicles (Elsevier)
- Derrida B 1998 An exactly soluble non-equilibrium system: the asymmetric simple exclusion process Phys. Rep. 301 65–83
- Blythe R A and Evans M R 2007 Nonequilibrium steady states of matrix-product form: a solver’s guide J. Phys. A: Math. Theor. 40 R333
- Crampe N, Ragoucy E and Vanicat M 2014 Integrable approach to simple exclusion processes with boundaries. review and progress J. Phys. Mech.: Theory Exp. P11032
- Essler FÂ H and Rittenberg V 1996 Representations of the quadratic algebra and partially asymmetric diffusion with open boundaries J. Phys. A: Math. Gen. 29 3375
- Golinelli O and Mallick K 2006 The asymmetric simple exclusion process: an integrable model for non-equilibrium statistical mechanics J. Phys. A: Math. Gen. 39 12679
- Gwa LÂ H and Spohn H 1992 Bethe solution for the dynamical-scaling exponent of the noisy Burgers equation Phys. Rev. A 46 844
- Kim D 1995 Bethe ansatz solution for crossover scaling functions of the asymmetric XXZ chain and the Kardar-Parisi-Zhang-type growth model Phys. Rev. E 52 3512
- Golinelli O and Mallick K 2004 Bethe ansatz calculation of the spectral gap of the asymmetric exclusion process J. Phys. A: Math. Gen. 37 3321
- Golinelli O and Mallick K 2005 Spectral gap of the totally asymmetric exclusion process at arbitrary filling J. Phys. A: Math. Gen. 38 1419
- Motegi K, Sakai K and Sato J 2012 Exact relaxation dynamics in the totally asymmetric simple exclusion process Phys. Rev. E 85(4) 042105
- Motegi K, Sakai K and Sato J 2012 Long time asymptotics of the totally asymmetric simple exclusion process J. Phys. A: Math. Theor. 45 465004
- Prolhac S 2013 Spectrum of the totally asymmetric simple exclusion process on a periodic lattice—bulk eigenvalues J. Phys. A: Math. Theor. 46 415001
- Prolhac S 2014 Spectrum of the totally asymmetric simple exclusion process on a periodic lattice-first excited states J. Phys. A: Math. Theor. 47 375001
- Prolhac S 2016 Extrapolation methods and Bethe ansatz for the asymmetric exclusion process J. Phys. A: Math. Theor. 49 454002
- Prolhac S 2017 Perturbative solution for the spectral gap of the weakly asymmetric exclusion process J. Phys. A: Math. Theor. 50 315001
- Ishiguro Y, Sato J and Nishinari K 2023 Asymmetry-induced delocalization transition in the integrable non-hermitian spin chain Phys. Rev. Res. 5(3) 033102
- De Gier J and Essler F H 2005 Bethe ansatz solution of the asymmetric exclusion process with open boundaries Phys. Rev. Lett. 95 240601
- de Gier J and Essler F H L 2006 Exact spectral gaps of the asymmetric exclusion process with open boundaries J. Stat. Mech.: Theory Exp. 2006 P12011
- de Gier J and Essler F H L 2008 Slowest relaxation mode of the partially asymmetric exclusion process with open boundaries J. Phys. A: Math. Theor. 41 485002
- de Gier J and Essler F H L 2011 Large Deviation Function for the Current in the Open Asymmetric Simple Exclusion Process Phys. Rev. Lett. 107(1) 010602
- Crampé N 2015 Algebraic Bethe ansatz for the totally asymmetric simple exclusion process with boundaries J. Phys. A: Math. Theor. 48 08FT01
- Sandow S and Schütz G 1994 On uq[su(2)]-symmetric driven diffusion Europhys. Lett. 26 7
- Schütz G M 1997 Duality relations for asymmetric exclusion processes J. Stat. Phys. 86 1265–1287
- Bertini L and Giacomin G 1997 Stochastic Burgers and KPZ equations from particle systems Commun. Math. Phys. 183 571–607
- Sasamoto T and Spohn H 2010 One-dimensional kardar-parisi-zhang equation: An exact solution and its universality Phys. Rev. Lett. 104(23) 230602
- Pronina E and Kolomeisky AÂ B 2004 Two-channel totally asymmetric simple exclusion processes J. Phys. A: Math. Theor. 37 9907
- Tsekouras K and Kolomeisky AÂ B 2008 Parallel coupling of symmetric and asymmetric exclusion processes J. Phys. A: Math. Theor. 41 465001
- Ezaki T and Nishinari K 2011 Exact solution of a heterogeneous multilane asymmetric simple exclusion process Phys. Rev. E 84(6) 061141
- Ezaki T and Nishinari K 2012 A balance network for the asymmetric simple exclusion process J. Phys. Mech.: Theory Exp. 2012 P11002
- Lee HÂ W, Popkov V and Kim D 1997 Two-way traffic flow: Exactly solvable model of traffic jam J. Phys. A: Math. Theor. 30 8497
- Fouladvand M E and Lee H W 1999 Exactly solvable two-way traffic model with ordered sequential update Phys. Rev. E 60(6) 6465–6479
- Parmeggiani A, Franosch T and Frey E 2003 Phase coexistence in driven one-dimensional transport Phys. Rev. Lett. 90(8) 086601
- Parmeggiani A, Franosch T and Frey E 2004 Totally asymmetric simple exclusion process with langmuir kinetics Phys. Rev. E 70(4) 046101
- Evans M R, Juhász R and Santen L 2003 Shock formation in an exclusion process with creation and annihilation Phys. Rev. E 68(2) 026117
- Ezaki T and Nishinari K 2012 Exact stationary distribution of an asymmetric simple exclusion process with langmuir kinetics and memory reservoirs J. Phys. A: Math. Theor. 45 185002
- Sato J and Nishinari K 2016 Relaxation dynamics of the asymmetric simple exclusion process with langmuir kinetics on a ring Phys. Rev. E 93(4) 042113
- Sato J and Nishinari K 2018 Relaxation dynamics of closed diffusive systems with infinitesimal langmuir kinetics Phys. Rev. E 97(3) 032135
- Dhiman I and Gupta A K 2016 Origin and dynamics of a bottleneck-induced shock in a two-channel exclusion process Phys. Lett. A 380 2038–2044 ISSN 0375-9601
- Verma AÂ K, Gupta AÂ K and Dhiman I 2015 Phase diagrams of three-lane asymmetrically coupled exclusion process with langmuir kinetics Europhys. Lett. 112 30008
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.