Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 114 tok/s
Gemini 3.0 Pro 53 tok/s Pro
Gemini 2.5 Flash 132 tok/s Pro
Kimi K2 176 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Dim Small Target Detection and Tracking: A Novel Method Based on Temporal Energy Selective Scaling and Trajectory Association (2405.09054v1)

Published 15 May 2024 in cs.CV

Abstract: The detection and tracking of small targets in passive optical remote sensing (PORS) has broad applications. However, most of the previously proposed methods seldom utilize the abundant temporal features formed by target motion, resulting in poor detection and tracking performance for low signal-to-clutter ratio (SCR) targets. In this article, we analyze the difficulty based on spatial features and the feasibility based on temporal features of realizing effective detection. According to this analysis, we use a multi-frame as a detection unit and propose a detection method based on temporal energy selective scaling (TESS). Specifically, we investigated the composition of intensity temporal profiles (ITPs) formed by pixels on a multi-frame detection unit. For the target-present pixel, the target passing through the pixel will bring a weak transient disturbance on the ITP and introduce a change in the statistical properties of ITP. We use a well-designed function to amplify the transient disturbance, suppress the background and noise components, and output the trajectory of the target on the multi-frame detection unit. Subsequently, to solve the contradiction between the detection rate and the false alarm rate brought by the traditional threshold segmentation, we associate the temporal and spatial features of the output trajectory and propose a trajectory extraction method based on the 3D Hough transform. Finally, we model the trajectory of the target and propose a trajectory-based multi-target tracking method. Compared with the various state-of-the-art detection and tracking methods, experiments in multiple scenarios prove the superiority of our proposed methods.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (59)
  1. S. Wang, Y. Liu, Y. Wang, and L. Li, “Research on target detection and tracking method applied to intelligent monitoring system,” in 2021 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA), Jun. 2021, pp. 1143–1147.
  2. M. Dutta, Md. Ashiqul Islam, A. Mohajon, S. Dev, D. Tripura, and I. Ahmed, “Extraction of Space Debris Approach: Diminish the Threats from Outer Space,” in 2022 IEEE International Conference on Nanoelectronics, Nanophotonics, Nanomaterials, Nanobioscience & Nanotechnology (5NANO), Apr. 2022, pp. 1–6.
  3. Y. Liu, X. Liu, X. Hao, W. Tang, S. Zhang, and T. Lei, “Single-Frame Infrared Small Target Detection by High Local Variance, Low-Rank and Sparse Decomposition,” IEEE Transactions on Geoscience and Remote Sensing, vol. 61, pp. 1–17, 2023.
  4. X. Shi, C. Yang, W. Xie, C. Liang, Z. Shi, and J. Chen, “Anti-Drone System with Multiple Surveillance Technologies: Architecture, Implementation, and Challenges,” IEEE Communications Magazine, vol. 56, no. 4, pp. 68–74, Apr. 2018.
  5. H. Fang, M. Xia, G. Zhou, Y. Chang, and L. Yan, “Infrared Small UAV Target Detection Based on Residual Image Prediction via Global and Local Dilated Residual Networks,” IEEE Geoscience and Remote Sensing Letters, vol. 19, pp. 1–5, 2022.
  6. X. Tian, J. Liu, and S. Tan, “A Novel DP-TBD Algorithm for Tracking Slowly Maneuvering Targets Using ViSAR Image Sequences,” in 2019 22ND INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION 2019).   New York: IEEE, 2019.
  7. M. Javanmardi and X. Qi, “Visual tracking of resident space objects via an RFS-based multi-Bernoulli track-before-detect method,” MACHINE VISION AND APPLICATIONS, vol. 29, no. 7, pp. 1191–1208, Oct. 2018.
  8. J. Du, H. Lu, L. Zhang, M. Hu, Y. Deng, X. Shen, D. Li, and Y. Zhang, “DP-MHT-TBD: A Dynamic Programming and Multiple Hypothesis Testing-Based Infrared Dim Point Target Detection Algorithm,” REMOTE SENSING, vol. 14, no. 20, p. 5072, Oct. 2022.
  9. M. Tian, Z. Chen, H. Wang, and L. Liu, “An Intelligent Particle Filter for Infrared Dim Small Target Detection and Tracking,” IEEE Transactions on Aerospace and Electronic Systems, vol. 58, no. 6, pp. 5318–5333, Dec. 2022.
  10. M. Zeng, J. X. Li, and Z. Peng, “The design of Top-Hat morphological filter and application to infrared target detection,” INFRARED PHYSICS & TECHNOLOGY, vol. 48, no. 1, pp. 67–76, Apr. 2006.
  11. E. Zhao, W. Zheng, M. Li, Z. Niu, X. Liu, and J. Wang, “A Fast Detection Method Using Anisotropic Guidance for Infrared Small Target Under Complex Scenes,” IEEE Geoscience and Remote Sensing Letters, vol. 20, pp. 1–5, 2023.
  12. C. L. P. Chen, H. Li, Y. Wei, T. Xia, and Y. Y. Tang, “A Local Contrast Method for Small Infrared Target Detection,” IEEE Transactions on Geoscience and Remote Sensing, vol. 52, no. 1, pp. 574–581, Jan. 2014.
  13. Y. Wei, X. You, and H. Li, “Multiscale patch-based contrast measure for small infrared target detection,” Pattern Recognition, vol. 58, pp. 216–226, Oct. 2016.
  14. H. Deng, X. Sun, M. Liu, C. Ye, and X. Zhou, “Infrared Small-Target Detection Using Multiscale Gray Difference Weighted Image Entropy,” IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, vol. 52, no. 1, pp. 60–72, Feb. 2016.
  15. C. Chen, R. Xia, Y. Liu, and Y. Liu, “A Simplified Dual-Weighted Three-Layer Window Local Contrast Method for Infrared Small-Target Detection,” IEEE Geoscience and Remote Sensing Letters, vol. 20, pp. 1–5, 2023.
  16. C. Gao, D. Meng, Y. Yang, Y. Wang, X. Zhou, and A. G. Hauptmann, “Infrared Patch-Image Model for Small Target Detection in a Single Image,” IEEE Transactions on Image Processing, vol. 22, no. 12, pp. 4996–5009, Dec. 2013.
  17. Y. Dai and Y. Wu, “Reweighted Infrared Patch-Tensor Model With Both Nonlocal and Local Priors for Single-Frame Small Target Detection,” IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, vol. 10, no. 8, pp. 3752–3767, Aug. 2017.
  18. Y. Sun, J. Yang, Y. Long, Z. Shang, and W. An, “Infrared Patch-Tensor Model With Weighted Tensor Nuclear Norm for Small Target Detection in a Single Frame,” IEEE ACCESS, vol. 6, pp. 76 140–76 152, 2018.
  19. Y. Dai, Y. Wu, F. Zhou, and K. Barnard, “Attentional Local Contrast Networks for Infrared Small Target Detection,” IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, vol. 59, no. 11, pp. 9813–9824, Nov. 2021.
  20. B. Nian, B. Jiang, H. Shi, and Y. Zhang, “Local Contrast Attention Guide Network for Detecting Infrared Small Targets,” IEEE Transactions on Geoscience and Remote Sensing, vol. 61, pp. 1–13, 2023.
  21. X. Wu, D. Hong, and J. Chanussot, “UIU-Net: U-Net in U-Net for Infrared Small Object Detection,” IEEE Transactions on Image Processing, vol. 32, pp. 364–376, 2023.
  22. S. S. Sengar and S. Mukhopadhyay, “Moving object detection based on frame difference and W4,” SIGNAL IMAGE AND VIDEO PROCESSING, vol. 11, no. 7, pp. 1357–1364, Oct. 2017.
  23. Y. Li, L. Jiao, X. Tang, X. Zhang, W. Zhang, and L. Gao, “Weak Moving Object Detection In Optical Remote Sensing Video With Motion-Drive Fusion Network,” in IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium, Jul. 2019, pp. 5476–5479.
  24. P. Du and A. Hamdulla, “Infrared Moving Small-Target Detection Using Spatial-Temporal Local Difference Measure,” IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, vol. 17, no. 10, pp. 1817–1821, Oct. 2020.
  25. D. Pang, T. Shan, P. Ma, W. Li, S. Liu, and R. Tao, “A Novel Spatiotemporal Saliency Method for Low-Altitude Slow Small Infrared Target Detection,” IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, vol. 19, 2022.
  26. J. Li, P. Zhang, L. Zhang, and Z. Zhang, “Sparse Regularization-Based Spatial–Temporal Twist Tensor Model for Infrared Small Target Detection,” IEEE Transactions on Geoscience and Remote Sensing, vol. 61, pp. 1–17, 2023.
  27. J. Silverman, J. M. Mooney, and C. E. Caefer, “Temporal filters for tracking weak slow point targets in evolving cloud clutter,” INFRARED PHYSICS & TECHNOLOGY, vol. 37, no. 6, pp. 695–710, Oct. 1996.
  28. A. P. Tzannes and D. H. Brooks, “Detecting small moving objects using temporal hypothesis testing,” IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, vol. 38, no. 2, pp. 570–586, Apr. 2002.
  29. D. Liu, J. Zhang, and W. Dong, “Temporal profile based small moving target detection algorithm in infrared image sequences,” INTERNATIONAL JOURNAL OF INFRARED AND MILLIMETER WAVES, vol. 28, no. 5, pp. 373–381, May 2007.
  30. T.-W. Bae, B.-I. Kim, Y.-C. Kim, and K.-I. Sohng, “Small target detection using cross product based on temporal profile in infrared image sequences,” COMPUTERS & ELECTRICAL ENGINEERING, vol. 36, no. 6, pp. 1156–1164, Nov. 2010.
  31. D. Liu, Z. Li, X. Wang, and J. Zhang, “Moving target detection by nonlinear adaptive filtering on temporal profiles in infrared image sequences,” INFRARED PHYSICS & TECHNOLOGY, vol. 73, pp. 41–48, Nov. 2015.
  32. D. Liu and Z. Li, “Temporal noise suppression for small target detection in infrared image sequences,” OPTIK, vol. 126, no. 24, pp. 4789–4795, 2015.
  33. W. Niu, W. Zheng, Z. Yang, Y. Wu, B. Vagvolgyi, and B. Liu, “Moving Point Target Detection Based on Higher Order Statistics in Very Low SNR,” IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, vol. 15, no. 2, pp. 217–221, Feb. 2018.
  34. Y. Wu, Z. Yang, W. Niu, and W. Zheng, “A Weak Moving Point Target Detection Method Based on High Frame Rate Image Sequences,” in IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM.   New York: IEEE, 2018, pp. 7066–7069.
  35. L. D. Chen Hao, “Dim Moving Small Target Detection by Local and Global Variance Filtering on Temporal Profiles in Infrared Sequences,” Aero Weaponry, vol. 26, no. 6, pp. 43–49, Feb. 2020.
  36. X. Liu, L. Li, L. Liu, X. Su, and F. Chen, “Moving Dim and Small Target Detection in Multiframe Infrared Sequence With Low SCR Based on Temporal Profile Similarity,” IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, vol. 19, p. 7507005, 2022.
  37. P. Wang, W. Niu, W. Gao, Y. Guo, and X. Peng, “Dim Moving Point Target Detection in Cloud Clutter Scenes Based on Temporal Profile Learning,” IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, vol. 20, p. 6006905, 2023.
  38. Y. Wang, T. Wang, G. Zhang, Q. Cheng, and J.-q. Wu, “Small Target Tracking in Satellite Videos Using Background Compensation,” IEEE Transactions on Geoscience and Remote Sensing, vol. 58, no. 10, pp. 7010–7021, Oct. 2020.
  39. M. Wan, X. Ye, X. Zhang, Y. Xu, G. Gu, and Q. Chen, “Infrared Small Target Tracking via Gaussian Curvature-Based Compressive Convolution Feature Extraction,” IEEE Geoscience and Remote Sensing Letters, vol. 19, pp. 1–5, 2022.
  40. R. Kou, C. Wang, Y. Yu, Z. Peng, F. Huang, and Q. Fu, “Infrared Small Target Tracking Algorithm via Segmentation Network and Multistrategy Fusion,” IEEE Transactions on Geoscience and Remote Sensing, vol. 61, pp. 1–12, 2023.
  41. A. P. Tzannes and D. H. Brooks, “Temporal filters for point target detection in IR imagery,” in INFRARED TECHNOLOGY AND APPLICATIONS XXIII, PTS 1 AND 2, B. F. Andresen and M. Strojnik, Eds., vol. 3061.   Bellingham: Spie - Int Soc Optical Engineering, 1997, pp. 508–520.
  42. L. Yu, “Moving target tracking based on improved Meanshift and Kalman filter algorithm,” in 2018 13th IEEE Conference on Industrial Electronics and Applications (ICIEA), May 2018, pp. 2486–2490.
  43. D. S. Bolme, J. R. Beveridge, B. A. Draper, and Y. M. Lui, “Visual object tracking using adaptive correlation filters,” in 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Jun. 2010, pp. 2544–2550.
  44. J. F. Henriques, R. Caseiro, P. Martins, and J. Batista, “Exploiting the Circulant Structure of Tracking-by-Detection with Kernels,” in Computer Vision – ECCV 2012, ser. Lecture Notes in Computer Science, A. Fitzgibbon, S. Lazebnik, P. Perona, Y. Sato, and C. Schmid, Eds.   Berlin, Heidelberg: Springer, 2012, pp. 702–715.
  45. J. F. Henriques, R. Caseiro, P. Martins, and J. Batista, “High-Speed Tracking with Kernelized Correlation Filters,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 37, no. 3, pp. 583–596, Mar. 2015.
  46. M. Danelljan, G. Bhat, F. Shahbaz Khan, and M. Felsberg, “ECO: Efficient Convolution Operators for Tracking,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 6638–6646.
  47. A. Lukezic, T. Vojir, L. Cehovin Zajc, J. Matas, and M. Kristan, “Discriminative Correlation Filter With Channel and Spatial Reliability,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 6309–6318.
  48. Y. Wang, W. Li, Z. Huang, R. Tao, and P. Ma, “Low-Slow-Small Target Tracking Using Relocalization Module,” IEEE Geoscience and Remote Sensing Letters, vol. 19, pp. 1–5, 2022.
  49. J. Yang, Z. Pan, Z. Wang, B. Lei, and Y. Hu, “SiamMDM: An Adaptive Fusion Network With Dynamic Template for Real-Time Satellite Video Single Object Tracking,” IEEE Transactions on Geoscience and Remote Sensing, vol. 61, pp. 1–19, 2023.
  50. S. Gao, J. Zhang, C. Wang, and C. Wang, “Research on Unmanned Aerial Vehicle Target Tracking Based on Kernel Correlation Filter and Kalman Filter,” in 2023 4th International Conference on Electronic Communication and Artificial Intelligence (ICECAI), May 2023, pp. 311–314.
  51. A. Bewley, Z. Ge, L. Ott, F. Ramos, and B. Upcroft, “Simple online and realtime tracking,” in 2016 IEEE International Conference on Image Processing (ICIP), Sep. 2016, pp. 3464–3468.
  52. N. Wojke, A. Bewley, and D. Paulus, “Simple online and realtime tracking with a deep association metric,” in 2017 IEEE International Conference on Image Processing (ICIP), Sep. 2017, pp. 3645–3649.
  53. M. Jeltsch, C. Dalitz, and R. Pohle-Fröhlich, “Hough Parameter Space Regularisation for Line Detection in 3D,” in International Conference on Computer Vision Theory and Applications, vol. 5.   SCITEPRESS, Feb. 2016, pp. 345–352.
  54. K. S. Roberts, “A new representation for a line,” in Proceedings CVPR ’88: The Computer Society Conference on Computer Vision and Pattern Recognition.   IEEE Computer Society, Jan. 1988, pp. 635,636,637,638,639,640–635,636,637,638,639,640.
  55. L. Zhang and Z. Peng, “Infrared Small Target Detection Based on Partial Sum of the Tensor Nuclear Norm,” Remote Sensing, vol. 11, no. 4, p. 382, Jan. 2019.
  56. L. Zhang, L. Peng, T. Zhang, S. Cao, and Z. Peng, “Infrared Small Target Detection via Non-Convex Rank Approximation Minimization Joint l2,1 Norm,” Remote Sensing, vol. 10, no. 11, p. 1821, Nov. 2018.
  57. J. Han, X. Zhang, Y. Jiang, X. Dong, Z. Li, and N. Li, “Small Moving Target Detection in Infrared Sequences by Using the Multiscale Temporal Relative Local Contrast,” in Advances in Guidance, Navigation and Control, ser. Lecture Notes in Electrical Engineering, L. Yan, H. Duan, and X. Yu, Eds.   Singapore: Springer, 2022, pp. 4433–4445.
  58. B. Babenko, M.-H. Yang, and S. Belongie, “Robust Object Tracking with Online Multiple Instance Learning,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 33, no. 8, pp. 1619–1632, Aug. 2011.
  59. N. C. Oza and S. J. Russell, “Online Bagging and Boosting,” in International Workshop on Artificial Intelligence and Statistics.   PMLR, Jan. 2001, pp. 229–236.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: