Papers
Topics
Authors
Recent
2000 character limit reached

Entanglement Distribution Delay Optimization in Quantum Networks with Distillation (2405.09034v1)

Published 15 May 2024 in quant-ph and cs.NI

Abstract: Quantum networks (QNs) distribute entangled states to enable distributed quantum computing and sensing applications. However, in such QNs, quantum switches (QSs) have limited resources that are highly sensitive to noise and losses and must be carefully allocated to minimize entanglement distribution delay. In this paper, a QS resource allocation framework is proposed, which jointly optimizes the average entanglement distribution delay and entanglement distillation operations, to enhance the end-to-end (e2e) fidelity and satisfy minimum rate and fidelity requirements. The proposed framework considers realistic QN noise and includes the derivation of the analytical expressions for the average quantum memory decoherence noise parameter, and the resulting e2e fidelity after distillation. Finally, practical QN deployment aspects are considered, where QSs can control 1) nitrogen-vacancy (NV) center SPS types based on their isotopic decomposition, and 2) nuclear spin regions based on their distance and coupling strength with the electron spin of NV centers. A simulated annealing metaheuristic algorithm is proposed to solve the QS resource allocation optimization problem. Simulation results show that the proposed framework manages to satisfy all users rate and fidelity requirements, unlike existing distillation-agnostic (DA), minimal distillation (MD), and physics-agnostic (PA) frameworks which do not perform distillation, perform minimal distillation, and does not control the physics-based NV center characteristics, respectively. Furthermore, the proposed framework results in around 30% and 50% reductions in the average e2e entanglement distribution delay compared to existing PA and MD frameworks, respectively. Moreover, the proposed framework results in around 5%, 7%, and 11% reductions in the average e2e fidelity compared to existing DA, PA, and MD frameworks, respectively.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (41)
  1. A. S. Cacciapuoti, M. Caleffi, F. Tafuri, F. S. Cataliotti, S. Gherardini, and G. Bianchi, “Quantum internet: networking challenges in distributed quantum computing,” IEEE Network, vol. 34, no. 1, pp. 137–143, 2019.
  2. R. Jozsa, D. S. Abrams, J. P. Dowling, and C. P. Williams, “Quantum clock synchronization based on shared prior entanglement,” Physical Review Letters, vol. 85, no. 9, p. 2010, 2000.
  3. Y. Cao, Y. Zhao, Q. Wang, J. Zhang, S. X. Ng, and L. Hanzo, “The evolution of quantum key distribution networks: On the road to the qinternet,” IEEE Communications Surveys & Tutorials, vol. 24, no. 2, pp. 839–894, 2022.
  4. M. Chehimi and W. Saad, “Physics-informed quantum communication networks: A vision toward the quantum internet,” IEEE Network, vol. 36, no. 5, pp. 32–38, 2022.
  5. Y. Lee, E. Bersin, A. Dahlberg, S. Wehner, and D. Englund, “A quantum router architecture for high-fidelity entanglement flows in quantum networks,” npj Quantum Information, vol. 8, no. 1, pp. 1–8, 2022.
  6. G. Vardoyan, S. Guha, P. Nain, and D. Towsley, “On the stochastic analysis of a quantum entanglement switch,” ACM SIGMETRICS Performance Evaluation Review, vol. 47, no. 2, pp. 27–29, 2019.
  7. T. Vasantam and D. Towsley, “Stability analysis of a quantum network with max-weight scheduling,” arXiv preprint arXiv:2106.00831, 2021.
  8. G. Vardoyan and S. Wehner, “Quantum network utility maximization,” in 2023 IEEE International Conference on Quantum Computing and Engineering (QCE), vol. 1, pp. 1238–1248, IEEE, 2023.
  9. M. Chehimi and W. Saad, “Entanglement rate optimization in heterogeneous quantum communication networks,” in 2021 17th International Symposium on Wireless Communication Systems (ISWCS), pp. 1–6, IEEE, 2021.
  10. S. Pouryousef, H. Shapourian, A. Shabani, and D. Towsley, “Quantum network planning for utility maximization,” in Proceedings of the 1st Workshop on Quantum Networks and Distributed Quantum Computing, pp. 13–18, 2023.
  11. S. Gauthier, G. Vardoyan, and S. Wehner, “A control architecture for entanglement generation switches in quantum networks,” in Proceedings of the 1st Workshop on Quantum Networks and Distributed Quantum Computing, pp. 38–44, 2023.
  12. N. K. Panigrahy, T. Vasantam, D. Towsley, and L. Tassiulas, “On the capacity region of a quantum switch with entanglement purification,” in IEEE INFOCOM 2023-IEEE Conference on Computer Communications, pp. 1–10, IEEE, 2023.
  13. M. Chehimi, B. Simon, W. Saad, A. Klein, D. Towsley, and M. Debbah, “Matching game for optimized association in quantum communication networks,” in Proc. of IEEE Global Communications Conference (Globecom), (Kuala Lumpur, Malaysia), Dec. 2023.
  14. G. Vardoyan, S. Guha, P. Nain, and D. Towsley, “On the stochastic analysis of a quantum entanglement distribution switch,” IEEE Transactions on Quantum Engineering, vol. 2, pp. 1–16, 2021.
  15. W. Dai, T. Peng, and M. Z. Win, “Quantum queuing delay,” IEEE Journal on Selected Areas in Communications, vol. 38, no. 3, pp. 605–618, 2020.
  16. M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, and L. C. Hollenberg, “The nitrogen-vacancy colour centre in diamond,” Physics Reports, vol. 528, no. 1, pp. 1–45, 2013.
  17. M. Atatüre, D. Englund, N. Vamivakas, S.-Y. Lee, and J. Wrachtrup, “Material platforms for spin-based photonic quantum technologies,” Nature Reviews Materials, vol. 3, no. 5, pp. 38–51, 2018.
  18. H. Bernien, B. Hensen, W. Pfaff, G. Koolstra, M. S. Blok, L. Robledo, T. H. Taminiau, M. Markham, D. J. Twitchen, L. Childress, et al., “Heralded entanglement between solid-state qubits separated by three metres,” Nature, vol. 497, no. 7447, pp. 86–90, 2013.
  19. F. Brandenburg et al., “Improving the electron spin properties of nitrogen-vacancy centres in nanodiamonds by near-field etching,” Scientific Reports, vol. 8, no. 1, p. 15847, 2018.
  20. G. Balasubramanian et al., “Ultralong spin coherence time in isotopically engineered diamond,” Nature materials, vol. 8, no. 5, pp. 383–387, 2009.
  21. F. Rozpędek et al., “Near-term quantum-repeater experiments with nitrogen-vacancy centers: Overcoming the limitations of direct transmission,” Physical Review A, vol. 99, no. 5, p. 052330, 2019.
  22. I. L. Chuang et al., “Bosonic quantum codes for amplitude damping,” Physical Review A, vol. 56, no. 2, p. 1114, 1997.
  23. G. Fuchs, G. Burkard, P. Klimov, and D. Awschalom, “A quantum memory intrinsic to single nitrogen–vacancy centres in diamond,” Nature Physics, vol. 7, no. 10, pp. 789–793, 2011.
  24. A. Abragam, The principles of nuclear magnetism. No. 32, Oxford university press, 1961.
  25. N. Bar-Gill, L. M. Pham, A. Jarmola, D. Budker, and R. L. Walsworth, “Solid-state electronic spin coherence time approaching one second,” Nature communications, vol. 4, no. 1, p. 1743, 2013.
  26. T. Taminiau et al., “Detection and control of individual nuclear spins using a weakly coupled electron spin,” Physical review letters, vol. 109, no. 13, p. 137602, 2012.
  27. P. C. Maurer, G. Kucsko, C. Latta, L. Jiang, N. Y. Yao, S. D. Bennett, F. Pastawski, D. Hunger, N. Chisholm, M. Markham, et al., “Room-temperature quantum bit memory exceeding one second,” Science, vol. 336, no. 6086, pp. 1283–1286, 2012.
  28. S. Jansen, K. Goodenough, S. de Bone, D. Gijswijt, and D. Elkouss, “Enumerating all bilocal clifford distillation protocols through symmetry reduction,” Quantum, vol. 6, p. 715, 2022.
  29. D. Gottesman, Stabilizer codes and quantum error correction. California Institute of Technology, 1997.
  30. C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K. Wootters, “Mixed-state entanglement and quantum error correction,” Physical Review A, vol. 54, no. 5, p. 3824, 1996.
  31. S. Kirkpatrick, C. D. Gelatt Jr, and M. P. Vecchi, “Optimization by simulated annealing,” science, vol. 220, no. 4598, pp. 671–680, 1983.
  32. M. Chehimi, M. Elhattab, W. Saad, G. Vardoyan, N. K. Panigrahy, C. Assi, and D. Towsley, “Reconfigurable intelligent surface (ris)-assisted entanglement distribution in fso quantum networks,” arXiv preprint arXiv:2401.10823, 2024.
  33. C. E. Bradley et al., “A ten-qubit solid-state spin register with quantum memory up to one minute,” Physical Review X, vol. 9, no. 3, p. 031045, 2019.
  34. H. Bartling et al., “Entanglement of spin-pair qubits with intrinsic dephasing times exceeding a minute,” Physical Review X, vol. 12, no. 1, p. 011048, 2022.
  35. B. Hensen et al., “Loophole-free bell inequality violation using electron spins separated by 1.3 kilometres,” Nature, vol. 526, no. 7575, pp. 682–686, 2015.
  36. L. Orphal-Kobin, K. Unterguggenberger, T. Pregnolato, N. Kemf, M. Matalla, R.-S. Unger, I. Ostermay, G. Pieplow, and T. Schröder, “Optically coherent nitrogen-vacancy defect centers in diamond nanostructures,” Physical Review X, vol. 13, no. 1, p. 011042, 2023.
  37. M. Ruf et al., “Optically coherent nitrogen-vacancy centers in micrometer-thin etched diamond membranes,” Nano letters, vol. 19, no. 6, pp. 3987–3992, 2019.
  38. S. Bogdanović et al., “Design and low-temperature characterization of a tunable microcavity for diamond-based quantum networks,” Applied Physics Letters, vol. 110, no. 17, 2017.
  39. M. K. Bhaskar et al., “Experimental demonstration of memory-enhanced quantum communication,” Nature, vol. 580, no. 7801, pp. 60–64, 2020.
  40. P. C. Humphreys et al., “Deterministic delivery of remote entanglement on a quantum network,” Nature, vol. 558, no. 7709, pp. 268–273, 2018.
  41. E. Takou, E. Barnes, and S. E. Economou, “Precise control of entanglement in multinuclear spin registers coupled to defects,” Physical Review X, vol. 13, no. 1, p. 011004, 2023.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: