Radiative Corrections to Light Thermal Pseudo-Dirac Dark Matter (2405.08881v2)
Abstract: Light thermal dark matter has emerged as an attractive theoretical possibility and a promising target for discovery at experiments in the near future. Such scenarios generically invoke mediators with very small couplings to the Standard Model, but moderately strong couplings within the dark sector, calling into question theoretical estimates based on the lowest order of perturbation theory. As an example, we focus on a scenario in which (pseudo)-Dirac fermion dark matter is connected to the standard model via a dark photon charged under a new $U(1){\prime}$ extension of the standard model, and we investigate the impact of the next-to-leading order corrections to annihilation and scattering. We find that radiative corrections can significantly impact model predictions for the relic density and scattering cross-section, depending on the strength of the dark sector coupling and ratio of the dark matter to mediator mass. We also show why factorization into the yield parameter $Y$ typically presented in literature leads to imprecision. Our results are necessary to accurately map experimental searches into the model parameter space and assess their ability to reach thermal production targets.
- Gianfranco Bertone and Tim Tait, M. P., “A new era in the search for dark matter,” Nature 562, 51–56 (2018), arXiv:1810.01668 [astro-ph.CO] .
- P. Cushman et al., “Working Group Report: WIMP Dark Matter Direct Detection,” in Snowmass 2013: Snowmass on the Mississippi (2013) arXiv:1310.8327 [hep-ex] .
- Jodi Cooley et al., “Report of the Topical Group on Particle Dark Matter for Snowmass 2021,” Proceedings of Snowmass 2021 (2022), arXiv:2209.07426 [hep-ph] .
- Pierre Fayet, “Effects of the Spin 1 Partner of the Goldstino (Gravitino) on Neutral Current Phenomenology,” Phys. Lett. B 95, 285–289 (1980).
- Pierre Fayet, “On the Search for a New Spin 1 Boson,” Nucl. Phys. B 187, 184–204 (1981).
- Bob Holdom, “Two U(1)’s and Epsilon Charge Shifts,” Phys. Lett. B 166, 196–198 (1986).
- Eder Izaguirre, Gordan Krnjaic, Philip Schuster, and Natalia Toro, “Testing GeV-Scale Dark Matter with Fixed-Target Missing Momentum Experiments,” Phys. Rev. D91, 094026 (2015a), arXiv:1411.1404 [hep-ph] .
- Eder Izaguirre, Gordan Krnjaic, Philip Schuster, and Natalia Toro, “Analyzing the Discovery Potential for Light Dark Matter,” Phys. Rev. Lett. 115, 251301 (2015b), arXiv:1505.00011 [hep-ph] .
- Eder Izaguirre, Gordan Krnjaic, and Maxim Pospelov, “MeV-Scale Dark Matter Deep Underground,” Phys. Rev. D 92, 095014 (2015c), arXiv:1507.02681 [hep-ph] .
- Eder Izaguirre, Gordan Krnjaic, and Brian Shuve, “Discovering Inelastic Thermal-Relic Dark Matter at Colliders,” Phys. Rev. D93, 063523 (2016), arXiv:1508.03050 [hep-ph] .
- Jonathan L. Feng and Jordan Smolinsky, “Impact of a resonance on thermal targets for invisible dark photon searches,” Phys. Rev. D 96, 095022 (2017), arXiv:1707.03835 [hep-ph] .
- Eder Izaguirre, Yonatan Kahn, Gordan Krnjaic, and Matthew Moschella, “Testing Light Dark Matter Coannihilation With Fixed-Target Experiments,” Phys. Rev. D96, 055007 (2017), arXiv:1703.06881 [hep-ph] .
- A. A. Aguilar-Arevalo et al. (MiniBooNE DM), “Dark Matter Search in Nucleon, Pion, and Electron Channels from a Proton Beam Dump with MiniBooNE,” Phys. Rev. D 98, 112004 (2018), arXiv:1807.06137 [hep-ex] .
- L. Marsicano, M. Battaglieri, M. Bondí, C. D. R. Carvajal, A. Celentano, M. De Napoli, R. De Vita, E. Nardi, M. Raggi, and P. Valente, “Novel Way to Search for Light Dark Matter in Lepton Beam-Dump Experiments,” Phys. Rev. Lett. 121, 041802 (2018), arXiv:1807.05884 [hep-ex] .
- Asher Berlin and Felix Kling, “Inelastic Dark Matter at the LHC Lifetime Frontier: ATLAS, CMS, LHCb, CODEX-b, FASER, and MATHUSLA,” Phys. Rev. D99, 015021 (2019), arXiv:1810.01879 [hep-ph] .
- Gopolang Mohlabeng, “Revisiting the dark photon explanation of the muon anomalous magnetic moment,” Phys. Rev. D 99, 115001 (2019), arXiv:1902.05075 [hep-ph] .
- Yu-Dai Tsai, Patrick deNiverville, and Ming Xiong Liu, “Dark Photon and Muon g−2𝑔2g-2italic_g - 2 Inspired Inelastic Dark Matter Models at the High-Energy Intensity Frontier,” Phys. Rev. Lett. 126, 181801 (2021), arXiv:1908.07525 [hep-ph] .
- Michael Duerr, Torben Ferber, Christopher Hearty, Felix Kahlhoefer, Kai Schmidt-Hoberg, and Patrick Tunney, “Invisible and displaced dark matter signatures at Belle II,” JHEP 02, 039 (2020), arXiv:1911.03176 [hep-ph] .
- Asher Berlin, Patrick deNiverville, Adam Ritz, Philip Schuster, and Natalia Toro, “Sub-GeV dark matter production at fixed-target experiments,” Phys. Rev. D 102, 095011 (2020), arXiv:2003.03379 [hep-ph] .
- Brian Batell, Jonathan L. Feng, Ahmed Ismail, Felix Kling, Roshan Mammen Abraham, and Sebastian Trojanowski, “Discovering dark matter at the LHC through its nuclear scattering in far-forward emulsion and liquid argon detectors,” Phys. Rev. D 104, 035036 (2021a), arXiv:2107.00666 [hep-ph] .
- Brian Batell, Joshua Berger, Luc Darmé, and Claudia Frugiuele, “Inelastic dark matter at the Fermilab Short Baseline Neutrino Program,” Phys. Rev. D 104, 075026 (2021b), arXiv:2106.04584 [hep-ph] .
- Mariana Carrillo González and Natalia Toro, “Cosmology and signals of light pseudo-Dirac dark matter,” JHEP 04, 060 (2022), arXiv:2108.13422 [hep-ph] .
- C. Cazzaniga et al. (NA64), “Probing the explanation of the muon (g-2) anomaly and thermal light dark matter with the semi-visible dark photon channel,” Eur. Phys. J. C 81, 959 (2021), arXiv:2107.02021 [hep-ex] .
- Stefania Gori et al., “Dark Sector Physics at High-Intensity Experiments,” (2022), arXiv:2209.04671 [hep-ph] .
- G. Krnjaic et al., “A Snowmass Whitepaper: Dark Matter Production at Intensity-Frontier Experiments,” (2022), arXiv:2207.00597 [hep-ph] .
- Martina Mongillo, Asli Abdullahi, Benjamin Banto Oberhauser, Paolo Crivelli, Matheus Hostert, Daniele Massaro, Laura Molina Bueno, and Silvia Pascoli, “Constraining light thermal inelastic dark matter with NA64,” Eur. Phys. J. C 83, 391 (2023), arXiv:2302.05414 [hep-ph] .
- Asli M. Abdullahi, Matheus Hostert, Daniele Massaro, and Silvia Pascoli, “Semi-Visible Dark Photons below the Electroweak Scale,” (2023), arXiv:2302.05410 [hep-ph] .
- Nirmalya Brahma, Saniya Heeba, and Katelin Schutz, “Resonant Pseudo-Dirac Dark Matter as a Sub-GeV Thermal Target,” (2023), arXiv:2308.01960 [hep-ph] .
- Timon Emken, Rouven Essig, Chris Kouvaris, and Mukul Sholapurkar, “Direct Detection of Strongly Interacting Sub-GeV Dark Matter via Electron Recoils,” JCAP 09, 070 (2019), arXiv:1905.06348 [hep-ph] .
- Itay M. Bloch, Andrea Caputo, Rouven Essig, Diego Redigolo, Mukul Sholapurkar, and Tomer Volansky, “Exploring new physics with O(keV) electron recoils in direct detection experiments,” JHEP 01, 178 (2021), arXiv:2006.14521 [hep-ph] .
- Rouven Essig et al., “Snowmass2021 Cosmic Frontier: The landscape of low-threshold dark matter direct detection in the next decade,” in Snowmass 2021 (2022) arXiv:2203.08297 [hep-ph] .
- Haipeng An, Maxim Pospelov, Josef Pradler, and Adam Ritz, “Directly Detecting MeV-scale Dark Matter via Solar Reflection,” Phys. Rev. Lett. 120, 141801 (2018), [Erratum: Phys.Rev.Lett. 121, 259903 (2018)], arXiv:1708.03642 [hep-ph] .
- Jae Hyeok Chang, Rouven Essig, and Samuel D. McDermott, “Supernova 1987A Constraints on Sub-GeV Dark Sectors, Millicharged Particles, the QCD Axion, and an Axion-like Particle,” JHEP 09, 051 (2018), arXiv:1803.00993 [hep-ph] .
- William DeRocco, Peter W. Graham, Daniel Kasen, Gustavo Marques-Tavares, and Surjeet Rajendran, “Supernova signals of light dark matter,” Phys. Rev. D 100, 075018 (2019), arXiv:1905.09284 [hep-ph] .
- Patrick J. Fitzpatrick, Hongwan Liu, Tracy R. Slatyer, and Yu-Dai Tsai, “New thermal relic targets for inelastic vector-portal dark matter,” Phys. Rev. D 106, 083507 (2022), arXiv:2105.05255 [hep-ph] .
- Cara Giovanetti, Mariangela Lisanti, Hongwan Liu, and Joshua T. Ruderman, “Joint Cosmic Microwave Background and Big Bang Nucleosynthesis Constraints on Light Dark Sectors with Dark Radiation,” Phys. Rev. Lett. 129, 021302 (2022), arXiv:2109.03246 [hep-ph] .
- Hooman Davoudiasl and William J. Marciano, “Running of the U(1) coupling in the dark sector,” Phys. Rev. D 92, 035008 (2015), arXiv:1502.07383 [hep-ph] .
- Aidan Reilly and Natalia Toro, “Ultraviolet Running Constraints on Low Mass Dark Sectors,” (2023), arXiv:2308.01347 [hep-ph] .
- Tracy R. Slatyer, “Indirect dark matter signatures in the cosmic dark ages. I. Generalizing the bound on s-wave dark matter annihilation from Planck results,” Phys. Rev. D 93, 023527 (2016), arXiv:1506.03811 [hep-ph] .
- K. A. Olive et al. (Particle Data Group), “Review of Particle Physics,” Chin. Phys. C 38, 090001 (2014).
- Yonatan Kahn, Gordan Krnjaic, Nhan Tran, and Andrew Whitbeck, “M3: a new muon missing momentum experiment to probe (g−2)μsubscript𝑔2𝜇(g-2)_{\mu}( italic_g - 2 ) start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT and dark matter at fermilab,” JHEP 09, 153 (2018), arXiv:1804.03144 [hep-ph] .
- Vladyslav Shtabovenko, Rolf Mertig, and Frederik Orellana, “FeynCalc 9.3: New features and improvements,” Comput. Phys. Commun. 256, 107478 (2020), arXiv:2001.04407 [hep-ph] .
- G. Passarino and M. J. G. Veltman, “One Loop Corrections for e+ e- Annihilation Into mu+ mu- in the Weinberg Model,” Nucl. Phys. B 160, 151–207 (1979).
- T. Hahn and M. Perez-Victoria, “Automatized one loop calculations in four-dimensions and D-dimensions,” Comput. Phys. Commun. 118, 153–165 (1999), arXiv:hep-ph/9807565 .
- Hiren H. Patel, “Package-X 2.0: A Mathematica package for the analytic calculation of one-loop integrals,” Comput. Phys. Commun. 218, 66–70 (2017), arXiv:1612.00009 [hep-ph] .
- Gary Steigman, Basudeb Dasgupta, and John F. Beacom, “Precise Relic WIMP Abundance and its Impact on Searches for Dark Matter Annihilation,” Phys. Rev. D 86, 023506 (2012), arXiv:1204.3622 [hep-ph] .
- Ken’ichi Saikawa and Satoshi Shirai, “Precise WIMP Dark Matter Abundance and Standard Model Thermodynamics,” JCAP 08, 011 (2020), arXiv:2005.03544 [hep-ph] .
- N. Aghanim et al. (Planck), “Planck 2018 results. VI. Cosmological parameters,” (2018), arXiv:1807.06209 [astro-ph.CO] .
- Richard J. Hill and Mikhail P. Solon, “Standard model anatomy of wimp dark matter direct detection. i. weak-scale matching,” Physical Review D 91 (2015), 10.1103/physrevd.91.043504.
- Rouven Essig, Jeremy Mardon, and Tomer Volansky, “Direct Detection of Sub-GeV Dark Matter,” Phys. Rev. D 85, 076007 (2012), arXiv:1108.5383 [hep-ph] .
- Fred Jegerlehner, “Renormalizing the standard model,” Conf. Proc. C 900603, 476–590 (1990).
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.