Papers
Topics
Authors
Recent
2000 character limit reached

A Dark Matter Fermionic Quantum Fluid from Standard Model Dynamics (2405.08874v2)

Published 14 May 2024 in hep-ph, astro-ph.CO, cond-mat.supr-con, and gr-qc

Abstract: We present a model of dark matter as a superconducting fluid of Cooper pairs of right handed neutrinos or of vector-like quarks. The superconducting dark matter is induced by attractive channels in the Standard Model Higgs and color sectors of the Standard Model, respectively. We show that, for each case, the solution to the gap equation provides viable dark matter candidates for suitable chemical potential values. The mechanism yields an ultra-light neutrino condensate with a mass of $m_{\rm DM} \sim 10{-19} \text{eV}$ or a vector-like quark condensate with wide range of possible masses. Both cosmological and particle physics constraints on the model lead to a connection between the number of effective relativistic species $N_{\rm eff}$, and the chemical potential and CMB temperature at the time of fermion creation. We also find a relation between the superconducting fermion and baryon densities, with implications for the coincidence between the dark matter and baryon densities in standard cosmology. Given the natural $\text{eV}$ scale of neutrinos, this mechanism may have implications for the Hubble tension.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (73)
  1. A. Arbey and F. Mahmoudi, Dark matter and the early Universe: a review, Prog. Part. Nucl. Phys. 119, 103865 (2021), arXiv:2104.11488 [hep-ph] .
  2. S. Alexander and S. Cormack, Gravitationally bound BCS state as dark matter, JCAP 04, 005, arXiv:1607.08621 [astro-ph.CO] .
  3. S. Alexander, E. McDonough, and D. N. Spergel, Chiral Gravitational Waves and Baryon Superfluid Dark Matter, JCAP 05, 003, arXiv:1801.07255 [hep-th] .
  4. R. Garani, M. H. G. Tytgat, and J. Vandecasteele, Condensed dark matter with a Yukawa interaction, Phys. Rev. D 106, 116003 (2022), arXiv:2207.06928 [hep-ph] .
  5. D. N. Spergel et al. (WMAP), Wilkinson Microwave Anisotropy Probe (WMAP) three year results: implications for cosmology, Astrophys. J. Suppl. 170, 377 (2007), arXiv:astro-ph/0603449 .
  6. N. Aghanim et al. (Planck), Planck 2018 results. VI. Cosmological parameters, Astron. Astrophys. 641, A6 (2020), [Erratum: Astron.Astrophys. 652, C4 (2021)], arXiv:1807.06209 [astro-ph.CO] .
  7. J. McDonald, Baryomorphosis: Relating the Baryon Asymmetry to the ’WIMP Miracle’, Phys. Rev. D 83, 083509 (2011a), arXiv:1009.3227 [hep-ph] .
  8. H. Davoudiasl and R. N. Mohapatra, On Relating the Genesis of Cosmic Baryons and Dark Matter, New J. Phys. 14, 095011 (2012), arXiv:1203.1247 [hep-ph] .
  9. K. Petraki and R. R. Volkas, Review of asymmetric dark matter, Int. J. Mod. Phys. A 28, 1330028 (2013), arXiv:1305.4939 [hep-ph] .
  10. J. McDonald, Simultaneous Generation of WIMP Miracle-like Densities of Baryons and Dark Matter, Phys. Rev. D 84, 103514 (2011b), arXiv:1108.4653 [hep-ph] .
  11. Y. Cui, L. Randall, and B. Shuve, A WIMPy Baryogenesis Miracle, JHEP 04, 075, arXiv:1112.2704 [hep-ph] .
  12. E. Witten, Cosmic Separation of Phases, Phys. Rev. D 30, 272 (1984).
  13. E. Farhi and R. L. Jaffe, Strange Matter, Phys. Rev. D 30, 2379 (1984).
  14. A. R. Zhitnitsky, ’Nonbaryonic’ dark matter as baryonic color superconductor, JCAP 10, 010, arXiv:hep-ph/0202161 .
  15. L. N. Cooper, Bound electron pairs in a degenerate fermi gas, Phys. Rev. 104, 1189 (1956).
  16. J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Microscopic theory of superconductivity, Phys. Rev. 106, 162 (1957a).
  17. J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Theory of superconductivity, Phys. Rev. 108, 1175 (1957b).
  18. S. Alexander, E. McDonough, and D. N. Spergel, Strongly-interacting ultralight millicharged particles, Phys. Lett. B 822, 136653 (2021), arXiv:2011.06589 [astro-ph.CO] .
  19. S. Dodelson and L. M. Widrow, Sterile-neutrinos as dark matter, Phys. Rev. Lett. 72, 17 (1994), arXiv:hep-ph/9303287 .
  20. B. Dasgupta and J. Kopp, Sterile Neutrinos, Phys. Rept. 928, 1 (2021), arXiv:2106.05913 [hep-ph] .
  21. G. Alonso-Álvarez and J. M. Cline, Sterile neutrino production at small mixing in the early universe, Phys. Lett. B 833, 137278 (2022), arXiv:2204.04224 [hep-ph] .
  22. R. Shankar, Renormalization group approach to interacting fermions, Rev. Mod. Phys. 66, 129 (1994), arXiv:cond-mat/9307009 .
  23. J. Polchinski, Effective field theory and the Fermi surface, in Theoretical Advanced Study Institute (TASI 92): From Black Holes and Strings to Particles (1992) pp. 0235–276, arXiv:hep-th/9210046 .
  24. R. Anglani, M. Mannarelli, and M. Ruggieri, Collective modes in the color flavor locked phase, New J. Phys. 13, 055002 (2011), arXiv:1101.4277 [hep-ph] .
  25. R. L. Workman et al. (Particle Data Group), Review of Particle Physics, PTEP 2022, 083C01 (2022).
  26. S. Tulin and H.-B. Yu, Dark Matter Self-interactions and Small Scale Structure, Phys. Rept. 730, 1 (2018), arXiv:1705.02358 [hep-ph] .
  27. S. Tremaine and J. E. Gunn, Dynamical role of light neutral leptons in cosmology, Phys. Rev. Lett. 42, 407 (1979).
  28. J. I. Kapusta, Neutrino superfluidity, Phys. Rev. Lett. 93, 251801 (2004), arXiv:hep-th/0407164 .
  29. R. D. Pisarski and D. H. Rischke, Superfluidity in a model of massless fermions coupled to scalar bosons, Phys. Rev. D 60, 094013 (1999), arXiv:nucl-th/9903023 .
  30. A. Chodos and F. Cooper, Neutrino condensation from a New Higgs Interaction, Phys. Rev. D 102, 113003 (2020), arXiv:2004.03731 [hep-ph] .
  31. T. Schäfer and F. Wilczek, High density quark matter and the renormalization group in QCD with two and three flavors, Phys. Lett. B 450, 325 (1999a), arXiv:hep-ph/9810509 .
  32. N. J. Evans, S. D. H. Hsu, and M. Schwetz, An Effective field theory approach to color superconductivity at high quark density, Nucl. Phys. B 551, 275 (1999), arXiv:hep-ph/9808444 .
  33. K. Rajagopal and F. Wilczek, The Condensed matter physics of QCD, in At the frontier of particle physics. Handbook of QCD. Vol. 1-3, edited by M. Shifman and B. Ioffe (2000) pp. 2061–2151, arXiv:hep-ph/0011333 .
  34. M. G. Alford, K. Rajagopal, and F. Wilczek, Color flavor locking and chiral symmetry breaking in high density QCD, Nucl. Phys. B 537, 443 (1999), arXiv:hep-ph/9804403 .
  35. T. Schäfer, Patterns of symmetry breaking in QCD at high baryon density, Nucl. Phys. B 575, 269 (2000), arXiv:hep-ph/9909574 .
  36. I. A. Shovkovy and L. C. R. Wijewardhana, On gap equations and color flavor locking in cold dense QCD with three massless flavors, Phys. Lett. B 470, 189 (1999), arXiv:hep-ph/9910225 .
  37. S. Nussinov and R. Shrock, Upper Limits on a Possible Gluon Mass, Phys. Rev. D 82, 034031 (2010), arXiv:1005.0850 [hep-ph] .
  38. D. T. Son, Superconductivity by long range color magnetic interaction in high density quark matter, Phys. Rev. D 59, 094019 (1999), arXiv:hep-ph/9812287 .
  39. T. Schäfer and F. Wilczek, Superconductivity from perturbative one gluon exchange in high density quark matter, Phys. Rev. D 60, 114033 (1999b), arXiv:hep-ph/9906512 .
  40. S. Alexander, J. J. Bramburger, and E. McDonough, Dark Disk Substructure and Superfluid Dark Matter, Phys. Lett. B 797, 134871 (2019), arXiv:1901.03694 [astro-ph.CO] .
  41. B. C. Barrois, Superconducting Quark Matter, Nucl. Phys. B 129, 390 (1977).
  42. S. C. Frautschi, Asymptotic freedom and color superconductivity in dense quark matter, in Workshop on Theoretical Physics: Hadronic Matter at Extreme Energy Density (1978).
  43. B. C. Barrois, Nonperturbative effects in dense quark matter, PhD Thesis, California Institute of Technology (1979).
  44. D. Bailin and A. Love, Superfluidity and Superconductivity in Relativistic Fermion Systems, Phys. Rept. 107, 325 (1984).
  45. M. G. Alford, K. Rajagopal, and F. Wilczek, QCD at finite baryon density: Nucleon droplets and color superconductivity, Phys. Lett. B 422, 247 (1998), arXiv:hep-ph/9711395 .
  46. M. Srednicki and L. Susskind, Alternative Patterns of Chiral Symmetry Breaking in QCD, Nucl. Phys. B 187, 93 (1981).
  47. D. J. Gross and F. Wilczek, Ultraviolet Behavior of Nonabelian Gauge Theories, Phys. Rev. Lett. 30, 1343 (1973).
  48. H. D. Politzer, Reliable Perturbative Results for Strong Interactions?, Phys. Rev. Lett. 30, 1346 (1973).
  49. J. C. Collins and M. J. Perry, Superdense Matter: Neutrons Or Asymptotically Free Quarks?, Phys. Rev. Lett. 34, 1353 (1975).
  50. M. G. Alford, J. Berges, and K. Rajagopal, Magnetic fields within color superconducting neutron star cores, Nucl. Phys. B 571, 269 (2000), arXiv:hep-ph/9910254 .
  51. There are proposals [17, 90] that assume the state to be confined in a spatial region (“quark clusters”). In this approach, the cluster total charge today reflects the mean charge density of the cosmic fluid at the time of its formation. So, quark clusters might have an overall small charge.
  52. D. G. Caldi and A. Chodos, Cosmological neutrino condensates,   (1999), arXiv:hep-ph/9903416 .
  53. M. Yoshimura, Primordial neutron star; a new candidate of dark matter,   (2022), arXiv:2209.02985 [hep-ph] .
  54. A. M. Sirunyan et al. (CMS), Search for single production of vector-like quarks decaying to a top quark and a W boson in proton-proton collisions at s=𝑠absent\sqrt{s}=square-root start_ARG italic_s end_ARG = 13 TeV, Eur. Phys. J. C 79, 90 (2019), arXiv:1809.08597 [hep-ex] .
  55. J. Barry, W. Rodejohann, and H. Zhang, Light Sterile Neutrinos: Models and Phenomenology, JHEP 07, 091, arXiv:1105.3911 [hep-ph] .
  56. Y. Nambu and G. Jona-Lasinio, Dynamical Model of Elementary Particles Based on an Analogy with Superconductivity. 1., Phys. Rev. 122, 345 (1961a).
  57. Y. Nambu and G. Jona-Lasinio, Dynamical model of elementary particles based on an analogy with superconductivity. II., Phys. Rev. 124, 246 (1961b).
  58. R. Stratonovich, On a method of calculating quantum distribution functions, in Soviet Physics Doklady, Vol. 2 (1957) p. 416.
  59. J. Hubbard, Calculation of partition functions, Phys. Rev. Lett. 3, 77 (1959).
  60. L. Gor’kov, On the energy spectrum of superconductors, Sov. Phys. JETP 7, 505 (1958).
  61. Y. Nambu, Quasiparticles and Gauge Invariance in the Theory of Superconductivity, Phys. Rev. 117, 648 (1960).
  62. A. G. Cohen, D. B. Kaplan, and A. E. Nelson, Progress in electroweak baryogenesis, Ann. Rev. Nucl. Part. Sci. 43, 27 (1993), arXiv:hep-ph/9302210 .
  63. A. Riotto, Theories of baryogenesis, in ICTP Summer School in High-Energy Physics and Cosmology (1998) pp. 326–436, arXiv:hep-ph/9807454 .
  64. M. Trodden, Electroweak baryogenesis, Rev. Mod. Phys. 71, 1463 (1999), arXiv:hep-ph/9803479 .
  65. D. E. Morrissey and M. J. Ramsey-Musolf, Electroweak baryogenesis, New J. Phys. 14, 125003 (2012), arXiv:1206.2942 [hep-ph] .
  66. A. Trautner, Massive Fermi Gas in the Expanding Universe, JCAP 03, 019, arXiv:1612.07249 [astro-ph.CO] .
  67. M.-C. Chen, M. Ratz, and A. Trautner, Nonthermal cosmic neutrino background, Phys. Rev. D 92, 123006 (2015), arXiv:1509.00481 [hep-ph] .
  68. W. Hu, R. Barkana, and A. Gruzinov, Cold and fuzzy dark matter, Phys. Rev. Lett. 85, 1158 (2000), arXiv:astro-ph/0003365 .
  69. D. J. E. Marsh, Axion Cosmology, Phys. Rept. 643, 1 (2016), arXiv:1510.07633 [astro-ph.CO] .
  70. E. G. M. Ferreira, Ultra-light dark matter, Astron. Astrophys. Rev. 29, 7 (2021), arXiv:2005.03254 [astro-ph.CO] .
  71. L. Hui, Wave Dark Matter, Ann. Rev. Astron. Astrophys. 59, 247 (2021), arXiv:2101.11735 [astro-ph.CO] .
  72. L. Roszkowski, E. M. Sessolo, and S. Trojanowski, WIMP dark matter candidates and searches—current status and future prospects, Rept. Prog. Phys. 81, 066201 (2018), arXiv:1707.06277 [hep-ph] .
  73. J. Khoury, Dark Matter Superfluidity, SciPost Phys. Lect. Notes 42, 1 (2022), arXiv:2109.10928 [astro-ph.CO] .
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 3 tweets with 0 likes about this paper.