Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 163 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 125 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Measurement-induced phase transitions in systems with diffusive dynamics (2405.08861v2)

Published 14 May 2024 in quant-ph, cond-mat.dis-nn, and cond-mat.stat-mech

Abstract: The competition between scrambling and projective measurements can lead to measurement-induced entanglement phase transitions (MIPT). In this work, we show that the universality class of the MIPT is drastically altered when the system is coupled to a diffusing conserved density. Specifically, we consider a 1+1d random Clifford circuit locally monitored by classically diffusing particles (measurers''). The resulting diffusive correlations in the measurement density are a relevant perturbation to the usual space-time random MIPT critical point, producing a new universality class for this phase transition. We findGriffiths-like'' effects due to rare space-time regions where, e.g., the diffusive measurers have a low or high density, but these are considerably weaker than the Griffiths effects that occur with quenched randomness that produce rare spatial regions with infinite lifetime.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (40)
  1. Quantum zeno effect and the many-body entanglement transition. Phys. Rev. B, 98:205136, Nov 2018. doi: 10.1103/PhysRevB.98.205136. URL https://link.aps.org/doi/10.1103/PhysRevB.98.205136.
  2. Measurement-induced phase transitions in the dynamics of entanglement. Phys. Rev. X, 9:031009, Jul 2019. doi: 10.1103/PhysRevX.9.031009. URL https://link.aps.org/doi/10.1103/PhysRevX.9.031009.
  3. Measurement-driven entanglement transition in hybrid quantum circuits. Phys. Rev. B, 100:134306, Oct 2019. doi: 10.1103/PhysRevB.100.134306. URL https://link.aps.org/doi/10.1103/PhysRevB.100.134306.
  4. Quantum error correction in scrambling dynamics and measurement-induced phase transition. Phys. Rev. Lett., 125:030505, Jul 2020. doi: 10.1103/PhysRevLett.125.030505. URL https://link.aps.org/doi/10.1103/PhysRevLett.125.030505.
  5. Dynamical purification phase transition induced by quantum measurements. Phys. Rev. X, 10:041020, Oct 2020a. doi: 10.1103/PhysRevX.10.041020. URL https://link.aps.org/doi/10.1103/PhysRevX.10.041020.
  6. Entanglement transitions from holographic random tensor networks. Phys. Rev. B, 100:134203, Oct 2019. doi: 10.1103/PhysRevB.100.134203. URL https://link.aps.org/doi/10.1103/PhysRevB.100.134203.
  7. Theory of the phase transition in random unitary circuits with measurements. Phys. Rev. B, 101:104301, Mar 2020. doi: 10.1103/PhysRevB.101.104301. URL https://link.aps.org/doi/10.1103/PhysRevB.101.104301.
  8. Critical properties of the measurement-induced transition in random quantum circuits. Phys. Rev. B, 101:060301, Feb 2020. doi: 10.1103/PhysRevB.101.060301. URL https://link.aps.org/doi/10.1103/PhysRevB.101.060301.
  9. Conformal invariance and quantum nonlocality in critical hybrid circuits. Phys. Rev. B, 104:104305, Sep 2021. doi: 10.1103/PhysRevB.104.104305. URL https://link.aps.org/doi/10.1103/PhysRevB.104.104305.
  10. Operator scaling dimensions and multifractality at measurement-induced transitions. Phys. Rev. Lett., 128:050602, Feb 2022. doi: 10.1103/PhysRevLett.128.050602. URL https://link.aps.org/doi/10.1103/PhysRevLett.128.050602.
  11. Entanglement Dynamics in Hybrid Quantum Circuits, pages 211–249. Springer International Publishing, Cham, 2022. ISBN 978-3-031-03998-0. doi: 10.1007/978-3-031-03998-0˙9. URL https://doi.org/10.1007/978-3-031-03998-0_9.
  12. Random quantum circuits. Annual Review of Condensed Matter Physics, 14(Volume 14, 2023):335–379, 2023. ISSN 1947-5462. doi: https://doi.org/10.1146/annurev-conmatphys-031720-030658. URL https://www.annualreviews.org/content/journals/10.1146/annurev-conmatphys-031720-030658.
  13. Mean-field entanglement transitions in random tree tensor networks. Phys. Rev. B, 102:064202, Aug 2020. doi: 10.1103/PhysRevB.102.064202. URL https://link.aps.org/doi/10.1103/PhysRevB.102.064202.
  14. Sagar Vijay. Measurement-driven phase transition within a volume-law entangled phase. arXiv preprint arXiv:2005.03052, 2020. URL https://arxiv.org/abs/2005.03052.
  15. Measurement-induced criticality and entanglement clusters: A study of one-dimensional and two-dimensional clifford circuits. Phys. Rev. B, 104:155111, Oct 2021. doi: 10.1103/PhysRevB.104.155111. URL https://link.aps.org/doi/10.1103/PhysRevB.104.155111.
  16. Measurement and entanglement phase transitions in all-to-all quantum circuits, on quantum trees, and in landau-ginsburg theory. PRX Quantum, 2:010352, Mar 2021. doi: 10.1103/PRXQuantum.2.010352. URL https://link.aps.org/doi/10.1103/PRXQuantum.2.010352.
  17. Measurement-induced phase transitions on dynamical quantum trees. PRX Quantum, 4:030333, Sep 2023. doi: 10.1103/PRXQuantum.4.030333. URL https://link.aps.org/doi/10.1103/PRXQuantum.4.030333.
  18. Measurement-induced quantum phases realized in a trapped-ion quantum computer. Nature Physics, 18(7):760–764, 2022. URL https://www.nature.com/articles/s41567-022-01619-7.
  19. Measurement-induced entanglement phase transition on a superconducting quantum processor with mid-circuit readout. Nature Physics, 19(9):1314–1319, 2023. URL https://www.nature.com/articles/s41567-023-02076-6.
  20. Google Quantum AI and Collaborators. Measurement-induced entanglement and teleportation on a noisy quantum processor. Nature, 2023. doi: 10.1038/s41586-023-06505-7. URL https://doi.org/10.1038/s41586-023-06505-7.
  21. Experimental demonstration of scalable cross-entropy benchmarking to detect measurement-induced phase transitions on a superconducting quantum processor. 2024. URL https://arxiv.org/abs/2403.00938.
  22. Cross entropy benchmark for measurement-induced phase transitions. Phys. Rev. Lett., 130:220404, Jun 2023. doi: 10.1103/PhysRevLett.130.220404. URL https://link.aps.org/doi/10.1103/PhysRevLett.130.220404.
  23. Transitions in the learnability of global charges from local measurements. Phys. Rev. Lett., 129:200602, Nov 2022a. doi: 10.1103/PhysRevLett.129.200602. URL https://link.aps.org/doi/10.1103/PhysRevLett.129.200602.
  24. Probing post-measurement entanglement without post-selection. arXiv preprint arXiv:2305.20092, 2023. URL https://arxiv.org/abs/2305.20092.
  25. Fate of measurement-induced phase transition in long-range interactions. Phys. Rev. Lett., 128:010603, Jan 2022. doi: 10.1103/PhysRevLett.128.010603. URL https://link.aps.org/doi/10.1103/PhysRevLett.128.010603.
  26. Measurement-induced transition in long-range interacting quantum circuits. Phys. Rev. Lett., 128:010604, Jan 2022. doi: 10.1103/PhysRevLett.128.010604. URL https://link.aps.org/doi/10.1103/PhysRevLett.128.010604.
  27. Measurement-induced dark state phase transitions in long-ranged fermion systems. Phys. Rev. Lett., 128:010605, Jan 2022. doi: 10.1103/PhysRevLett.128.010605. URL https://link.aps.org/doi/10.1103/PhysRevLett.128.010605.
  28. Infinite-randomness criticality in monitored quantum dynamics with static disorder. Phys. Rev. B, 107:L220204, Jun 2023. doi: 10.1103/PhysRevB.107.L220204. URL https://link.aps.org/doi/10.1103/PhysRevB.107.L220204.
  29. Measurement induced criticality in quasiperiodic modulated random hybrid circuits. Phys. Rev. B, 108:184204, Nov 2023. doi: 10.1103/PhysRevB.108.184204. URL https://link.aps.org/doi/10.1103/PhysRevB.108.184204.
  30. Sub-ballistic growth of rényi entropies due to diffusion. Phys. Rev. Lett., 122:250602, Jun 2019. doi: 10.1103/PhysRevLett.122.250602. URL https://link.aps.org/doi/10.1103/PhysRevLett.122.250602.
  31. Charge and entanglement criticality in a u(1)-symmetric hybrid circuit of qubits. arXiv:2307.13038, 2023. URL https://arxiv.org/abs/2307.13038.
  32. Note1. At special points where the critical measurement rate does not depend linearly on the density, the coupling to diffusion may be irrelevant. We will not consider this case in the present work.
  33. Entanglement and charge-sharpening transitions in u(1) symmetric monitored quantum circuits. Phys. Rev. X, 12:041002, Oct 2022. doi: 10.1103/PhysRevX.12.041002. URL https://link.aps.org/doi/10.1103/PhysRevX.12.041002.
  34. Field theory of charge sharpening in symmetric monitored quantum circuits. Phys. Rev. Lett., 129:120604, Sep 2022b. doi: 10.1103/PhysRevLett.129.120604. URL https://link.aps.org/doi/10.1103/PhysRevLett.129.120604.
  35. Scalable probes of measurement-induced criticality. Phys. Rev. Lett., 125:070606, Aug 2020b. doi: 10.1103/PhysRevLett.125.070606. URL https://link.aps.org/doi/10.1103/PhysRevLett.125.070606.
  36. Spatiotemporal generalization of the harris criterion and its application to diffusive disorder. Phys. Rev. E, 93:032143, Mar 2016. doi: 10.1103/PhysRevE.93.032143. URL https://link.aps.org/doi/10.1103/PhysRevE.93.032143.
  37. Conserved quantities in models of classical chaos. arXiv:2307.11733, 2023. URL https://arxiv.org/abs/2307.11733.
  38. A B Harris. Effect of random defects on the critical behaviour of ising models. Journal of Physics C: Solid State Physics, 7(9):1671, may 1974. doi: 10.1088/0022-3719/7/9/009. URL https://dx.doi.org/10.1088/0022-3719/7/9/009.
  39. See the Supplemental Material.
  40. Power-law entanglement and hilbert space fragmentation in non-reciprocal quantum circuits. 2024. URL https://arxiv.org/abs/2405.06021.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: