On approximation to a real number by algebraic numbers of bounded degree (2405.08341v1)
Abstract: In his seminal 1961 paper, Wirsing studied how well a given transcendental real number $\xi$ can be approximated by algebraic numbers $\alpha$ of degree at most $n$ for a given positive integer $n$, in terms of the so-called naive height $H(\alpha)$ of $\alpha$. He showed that the infimum $\omega*_n(\xi)$ of all $\omega$ for which infinitely many such $\alpha$ have $|\xi-\alpha| \le H(\alpha){-\omega-1}$ is at least $(n+1)/2$. He also asked if we could even have $\omega*_n(\xi) \ge n$ as it is generally expected. Since then, all improvements on Wirsing's lower bound were of the form $n/2+\mathcal{O}(1)$ until Badziahin and Schleischitz showed in 2021 that $\omega*_n(\xi) \ge an$ for each $n\ge 4$, with $a=1/\sqrt{3}\simeq 0.577$. In this paper, we use a different approach partly inspired by parametric geometry of numbers and show that $\omega*_n(\xi) \ge an$ for each $n\ge 2$, with $a=1/(2-\log 2)\simeq 0.765$.
- D. Badziahin and J. Schleischitz. An improved bound in Wirsing’s problem. Trans. Amer. Math. Soc., 374(3):1847–1861, 2021.
- V. I. Bernik and K. Tishchenko. Integral polynomials with an overfall of the coefficient values and Wirsing’s theorem. In Dokl. Akad. Nauk Belarusi, volume 37, pages 9–11, 1993.
- W. D. Brownawell. Sequences of Diophantine approximations. J. Number Theory, 6(1):11–21, 1974.
- Y. Bugeaud. Approximation by algebraic numbers, volume 160 of Cambridge Tracts in Mathematics. Cambridge University Press, 2004.
- Y. Bugeaud. Exponents of Diophantine approximation. In D. Badziahin, A. Gorodnik, and N. Peyerimhoff, editors, Dynamics and Analytic Number Theory, volume 437 of London Math. Soc. Lecture Note Ser., chapter 2, pages 96–135. Cambridge University Press, 2016.
- Y. Bugeaud and M. Laurent. Exponents of Diophantine approximation. Diophantine Geometry Proceedings, Scuola Normale Superiore Pisa, Ser. CRM, 4:101–121, 2007.
- H. Davenport and W. Schmidt. Approximation to real numbers by quadratic irrationals. Acta Arith., 13(2):169–176, 1967.
- H. Davenport and W. Schmidt. A theorem on linear forms. Acta Arith., 2(14):209–223, 1968.
- H. Davenport and W. Schmidt. Approximation to real numbers by algebraic integers. Acta Arith., 15(4):393–416, 1969.
- C. De La Vallée Poussin. Leçons sur l’approximation des fonctions d’une variable réelle. Gauthier-Villars, Paris, 1919.
- A. Khintchine. Über eine Klasse linearer diophantischer Approximationen. Rendiconti Circ. Mat. Palermo, 50(2):170–195, 1926.
- J. F. Koksma. Über die Mahlersche Klasseneinteilung der transzendenten Zahlen und die Approximation komplexer Zahlen durch algebraische Zahlen. Monatsh. Math. Phys., 48:176–189, 1939.
- A. Poëls. On uniform polynomial approximation. arXiv:2405.07219 [math.NT], 2024.
- D. Roy. On Schmidt and Summerer parametric geometry of numbers. Ann. of Math., 182:739–786, 2015.
- W. M. Schmidt. Diophantine Approximation, volume 785 of Lecture Notes in Math. Springer-Verlag, 1980.
- W. M. Schmidt and L. Summerer. Parametric geometry of numbers and applications. Acta Arith., 140:67–91, 2009.
- W. M. Schmidt and L. Summerer. Diophantine approximation and parametric geometry of numbers. Monatsh. Math., 169:51–104, 2013.
- V. G. Sprindzuk. Mahler’s problem in the metric theory of numbers. Amer. Math. Soc., Providence, R.I., 25, 1969.
- K. Tishchenko. On approximation to real numbers by algebraic numbers. Acta Arith., 94(1):1–24, 2000.
- K. Tsishchanka. On approximation of real numbers by algebraic numbers of bounded degree. J. Number Theory, 123(2):290–314, 2007.
- E. Wirsing. Approximation mit algebraischen Zahlen beschränkten Grades. J. reine angew. Math., 206:67–77, 1961.