Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Uniform Diophantine approximation with restricted denominators (2302.03923v2)

Published 8 Feb 2023 in math.NT and math.DS

Abstract: Let $b\geq2$ be an integer and $A=(a_{n}){n=1}{\infty}$ be a strictly increasing subsequence of positive integers with $\eta:=\limsup\limits{n\to\infty}\frac{a_{n+1}}{a_{n}}<+\infty$. For each irrational real number $\xi$, we denote by $\hat{v}{b,A}(\xi)$ the supremum of the real numbers $\hat{v}$ for which, for every sufficiently large integer $N$, the equation $|b{a_n}\xi|<(b{a_N}){-\hat{v}}$ has a solution $n$ with $1\leq n\leq N$. For every $\hat{v}\in[0,\eta]$, let $\hat{\mathcal{V}}{b,A}(\hat{v})$ ($\hat{\mathcal{V}}{b,A}{\ast}(\hat{v})$) be the set of all real numbers $\xi$ such that $\hat{v}{b,A}(\xi)\geq\hat{v}$ ($\hat{v}{b,A}(\xi)=\hat{v}$) respectively. In this paper, we give some results of the Hausdorfff dimensions of $\hat{\mathcal{V}}{b,A}(\hat{v})$ and $\hat{\mathcal{V}}{b,A}{\ast}(\hat{v})$. When $\eta=1$, we prove that the Hausdorfff dimensions of $\hat{\mathcal{V}}{b,A}(\hat{v})$ and $\hat{\mathcal{V}}{b,A}{\ast}(\hat{v})$ are equal to $\left(\frac{1-\hat{v}}{1+\hat{v}}\right){2}$ for any $\hat{v}\in[0,1]$. When $\eta>1$ and $\lim{n\to\infty}\frac{a_{n+1}}{a_{n}}$ exists, we show that the Hausdorfff dimension of $\hat{\mathcal{V}}{b,A}(\hat{v})$ is strictly less than $\left(\frac{\eta-\hat{v}}{\eta+\hat{v}}\right){2}$ for some $\hat{v}$, which is different with the case $\eta=1$, and we give a lower bound of the Hausdorfff dimensions of $\hat{\mathcal{V}}{b,A}(\hat{v})$ and $\hat{\mathcal{V}}_{b,A}{\ast}(\hat{v})$ for any $\hat{v}\in[0,\eta]$. Furthermore, we show that this lower bound can be reached for some $\hat{v}$.

Summary

We haven't generated a summary for this paper yet.