Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 38 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Covariant single-field formulation of effective cosmological bounces (2405.08071v2)

Published 13 May 2024 in gr-qc

Abstract: This study explores the feasibility of an effective Friedmann equation in removing the classical Big Bang initial singularity and replacing it with a non-singular bounce occurring at a critical energy density value. In a spatially flat, homogeneous, and isotropic universe, the effective theory is obtained by introducing a function that is parametrically dependent on the critical energy density. This function measures the deviation from the benchmark theory, which is recovered as the critical energy density approaches infinity. Focusing on the covariant single-field formulation in viable Horndeski gravity, our analysis shows that both the effective and the benchmark theories belong to the same scalar-tensor theory, without any additional propagating degrees of freedom: the cuscuton and extended cuscuton models.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (61)
  1. M. Bojowald, Absence of singularity in loop quantum cosmology, Phys. Rev. Lett. 86, 5227 (2001), arXiv:gr-qc/0102069 .
  2. A. Ashtekar and P. Singh, Loop Quantum Cosmology: A Status Report, Class. Quant. Grav. 28, 213001 (2011), arXiv:1108.0893 [gr-qc] .
  3. S. M. Carroll, Spacetime and Geometry: An Introduction to General Relativity (Cambridge University Press, 2019).
  4. V. A. Rubakov, The Null Energy Condition and its violation, Phys. Usp. 57, 128 (2014), arXiv:1401.4024 [hep-th] .
  5. S. Capozziello, F. S. N. Lobo, and J. P. Mimoso, Generalized energy conditions in Extended Theories of Gravity, Phys. Rev. D 91, 124019 (2015), arXiv:1407.7293 [gr-qc] .
  6. A. Ijjas, J. Ripley, and P. J. Steinhardt, NEC violation in mimetic cosmology revisited, Phys. Lett. B 760, 132 (2016), arXiv:1604.08586 [gr-qc] .
  7. V. Taveras, Corrections to the Friedmann Equations from LQG for a Universe with a Free Scalar Field, Phys. Rev. D 78, 064072 (2008), arXiv:0807.3325 [gr-qc] .
  8. P. Singh, K. Vandersloot, and G. V. Vereshchagin, Non-singular bouncing universes in loop quantum cosmology, Phys. Rev. D 74, 043510 (2006), arXiv:gr-qc/0606032 .
  9. M. Sami, P. Singh, and S. Tsujikawa, Avoidance of future singularities in loop quantum cosmology, Phys. Rev. D 74, 043514 (2006), arXiv:gr-qc/0605113 .
  10. M. Bojowald, Quantum Cosmology: Effective Theory, Class. Quant. Grav. 29, 213001 (2012), arXiv:1209.3403 [gr-qc] .
  11. J. Mielczarek and M. Szydlowski, Emerging singularities in the bouncing loop cosmology, Phys. Rev. D 77, 124008 (2008), arXiv:0801.1073 [gr-qc] .
  12. B.-F. Li, P. Singh, and A. Wang, Towards Cosmological Dynamics from Loop Quantum Gravity, Phys. Rev. D 97, 084029 (2018a), arXiv:1801.07313 [gr-qc] .
  13. B.-F. Li, P. Singh, and A. Wang, Qualitative dynamics and inflationary attractors in loop cosmology, Phys. Rev. D 98, 066016 (2018b), arXiv:1807.05236 [gr-qc] .
  14. B.-F. Li, P. Singh, and A. Wang, Genericness of pre-inflationary dynamics and probability of the desired slow-roll inflation in modified loop quantum cosmologies, Phys. Rev. D 100, 063513 (2019), arXiv:1906.01001 [gr-qc] .
  15. O. Hrycyna, J. Mielczarek, and M. Szydlowski, Effects of the quantisation ambiguities on the Big Bounce dynamics, Gen. Rel. Grav. 41, 1025 (2009), arXiv:0804.2778 [gr-qc] .
  16. P. Dzierzak, P. Malkiewicz, and W. Piechocki, Turning big bang into big bounce. 1. Classical dynamics, Phys. Rev. D 80, 104001 (2009), arXiv:0907.3436 [gr-qc] .
  17. C. Renevey, K. Martineau, and A. Barrau, Cosmological implications of generalized holonomy corrections, Phys. Rev. D 105, 063521 (2022), arXiv:2109.14400 [gr-qc] .
  18. J. Marto, Y. Tavakoli, and P. Vargas Moniz, Improved dynamics and gravitational collapse of tachyon field coupled with a barotropic fluid, Int. J. Mod. Phys. D 24, 1550025 (2015), arXiv:1308.4953 [gr-qc] .
  19. E. Wilson-Ewing, Loop quantum cosmology with self-dual variables, Phys. Rev. D 92, 123536 (2015), arXiv:1503.07855 [gr-qc] .
  20. S. Nojiri and S. D. Odintsov, Introduction to modified gravity and gravitational alternative for dark energy, eConf C0602061, 06 (2006), arXiv:hep-th/0601213 .
  21. S. Capozziello and M. Francaviglia, Extended Theories of Gravity and their Cosmological and Astrophysical Applications, Gen. Rel. Grav. 40, 357 (2008), arXiv:0706.1146 [astro-ph] .
  22. T. P. Sotiriou and V. Faraoni, f(R) Theories Of Gravity, Rev. Mod. Phys. 82, 451 (2010), arXiv:0805.1726 [gr-qc] .
  23. S. Capozziello and M. De Laurentis, Extended Theories of Gravity, Phys. Rept. 509, 167 (2011), arXiv:1108.6266 [gr-qc] .
  24. L. Heisenberg, A systematic approach to generalisations of General Relativity and their cosmological implications, Phys. Rept. 796, 1 (2019), arXiv:1807.01725 [gr-qc] .
  25. R. Brandenberger, Matter Bounce in Horava-Lifshitz Cosmology, Phys. Rev. D 80, 043516 (2009), arXiv:0904.2835 [hep-th] .
  26. R. Brandenberger and P. Peter, Bouncing Cosmologies: Progress and Problems, Found. Phys. 47, 797 (2017), arXiv:1603.05834 [hep-th] .
  27. T. Biswas, T. Koivisto, and A. Mazumdar, Towards a resolution of the cosmological singularity in non-local higher derivative theories of gravity, JCAP 11, 008, arXiv:1005.0590 [hep-th] .
  28. D. Battefeld and P. Peter, A Critical Review of Classical Bouncing Cosmologies, Phys. Rept. 571, 1 (2015), arXiv:1406.2790 [astro-ph.CO] .
  29. A. Ijjas and P. J. Steinhardt, Fully stable cosmological solutions with a non-singular classical bounce, Phys. Lett. B 764, 289 (2017), arXiv:1609.01253 [gr-qc] .
  30. A. Ijjas and P. J. Steinhardt, Classically stable nonsingular cosmological bounces, Phys. Rev. Lett. 117, 121304 (2016), arXiv:1606.08880 [gr-qc] .
  31. A. Ijjas, Space-time slicing in Horndeski theories and its implications for non-singular bouncing solutions, JCAP 02, 007, arXiv:1710.05990 [gr-qc] .
  32. M. de Cesare, Limiting curvature mimetic gravity for group field theory condensates, Phys. Rev. D 99, 063505 (2019), arXiv:1812.06171 [gr-qc] .
  33. S. Mironov, V. Rubakov, and V. Volkova, Bounce beyond Horndeski with GR asymptotics and γ𝛾\gammaitalic_γ-crossing, JCAP 10, 050, arXiv:1807.08361 [hep-th] .
  34. S. Mironov, V. Rubakov, and V. Volkova, Genesis with general relativity asymptotics in beyond Horndeski theory, Phys. Rev. D 100, 083521 (2019), arXiv:1905.06249 [hep-th] .
  35. S. Mironov, V. Rubakov, and V. Volkova, Subluminal cosmological bounce beyond Horndeski, JCAP 05, 024, arXiv:1910.07019 [hep-th] .
  36. D. Polarski, A. A. Starobinsky, and Y. Verbin, Bouncing cosmological isotropic solutions in scalar-tensor gravity, JCAP 01 (01), 052, arXiv:2111.07319 [gr-qc] .
  37. L. Bel and H. S. Zia, Regular reduction of relativistic theories of gravitation with a quadratic Lagrangian, Phys. Rev. D 32, 3128 (1985).
  38. T. P. Sotiriou, Covariant Effective Action for Loop Quantum Cosmology from Order Reduction, Phys. Rev. D 79, 044035 (2009), arXiv:0811.1799 [gr-qc] .
  39. I. Terrucha, D. Vernieri, and J. P. S. Lemos, Covariant action for bouncing cosmologies in modified Gauss–Bonnet gravity, Annals Phys. 404, 39 (2019), arXiv:1904.00260 [gr-qc] .
  40. F. Bajardi, D. Vernieri, and S. Capozziello, Bouncing Cosmology in f(Q) Symmetric Teleparallel Gravity, Eur. Phys. J. Plus 135, 912 (2020), arXiv:2011.01248 [gr-qc] .
  41. A. R. Ribeiro, D. Vernieri, and F. S. N. Lobo, Effective f(R) Actions for Modified Loop Quantum Cosmologies via Order Reduction, Universe 9, 181 (2023), arXiv:2104.12283 [gr-qc] .
  42. G. J. Olmo and P. Singh, Effective Action for Loop Quantum Cosmology a la Palatini, JCAP 01, 030, arXiv:0806.2783 [gr-qc] .
  43. C. Barragan, G. J. Olmo, and H. Sanchis-Alepuz, Bouncing Cosmologies in Palatini f(R) Gravity, Phys. Rev. D 80, 024016 (2009), arXiv:0907.0318 [gr-qc] .
  44. A. Delhom, G. J. Olmo, and P. Singh, A diffeomorphism invariant family of metric-affine actions for loop cosmologies, JCAP 06, 059, arXiv:2302.04285 [gr-qc] .
  45. J. Garriga and V. F. Mukhanov, Perturbations in k-inflation, Phys. Lett. B 458, 219 (1999), arXiv:hep-th/9904176 .
  46. C. Armendariz-Picon, V. F. Mukhanov, and P. J. Steinhardt, Essentials of k essence, Phys. Rev. D 63, 103510 (2001), arXiv:astro-ph/0006373 .
  47. E. J. Copeland, M. Sami, and S. Tsujikawa, Dynamics of dark energy, Int. J. Mod. Phys. D 15, 1753 (2006), arXiv:hep-th/0603057 .
  48. A. R. Gomes and L. Amendola, Towards scaling cosmological solutions with full coupled Horndeski Lagrangian: the KGB model, JCAP 03, 041, arXiv:1306.3593 [astro-ph.CO] .
  49. G. W. Horndeski, Second-order scalar-tensor field equations in a four-dimensional space, Int. J. Theor. Phys. 10, 363 (1974).
  50. T. Kobayashi, M. Yamaguchi, and J. Yokoyama, Generalized G-inflation: Inflation with the most general second-order field equations, Prog. Theor. Phys. 126, 511 (2011), arXiv:1105.5723 [hep-th] .
  51. N. Afshordi, D. J. H. Chung, and G. Geshnizjani, Cuscuton: A Causal Field Theory with an Infinite Speed of Sound, Phys. Rev. D 75, 083513 (2007a), arXiv:hep-th/0609150 .
  52. N. Afshordi, Cuscuton and low energy limit of Horava-Lifshitz gravity, Phys. Rev. D 80, 081502 (2009), arXiv:0907.5201 [hep-th] .
  53. A. Iyonaga, K. Takahashi, and T. Kobayashi, Extended Cuscuton: Formulation, JCAP 12, 002, arXiv:1809.10935 [gr-qc] .
  54. J. Quintin and D. Yoshida, Cuscuton gravity as a classically stable limiting curvature theory, JCAP 02, 016, arXiv:1911.06040 [gr-qc] .
  55. P. Creminelli and F. Vernizzi, Dark Energy after GW170817 and GRB170817A, Phys. Rev. Lett. 119, 251302 (2017), arXiv:1710.05877 [astro-ph.CO] .
  56. L. O. Pimentel, Energy Momentum Tensor in the General Scalar - Tensor Theory, Class. Quant. Grav. 6, L263 (1989).
  57. O. Pujolas, I. Sawicki, and A. Vikman, The Imperfect Fluid behind Kinetic Gravity Braiding, JHEP 11, 156, arXiv:1103.5360 [hep-th] .
  58. V. Faraoni and J. Coté, Imperfect fluid description of modified gravities, Phys. Rev. D 98, 084019 (2018), arXiv:1808.02427 [gr-qc] .
  59. X. Gao and Z.-B. Yao, Spatially covariant gravity theories with two tensorial degrees of freedom: the formalism, Phys. Rev. D 101, 064018 (2020), arXiv:1910.13995 [gr-qc] .
  60. J. L. Kim and G. Geshnizjani, Spectrum of Cuscuton Bounce, JCAP 03, 104, arXiv:2010.06645 [gr-qc] .
  61. N. Bartolo, A. Ganz, and S. Matarrese, Cuscuton inflation, JCAP 05 (05), 008, arXiv:2111.06794 [gr-qc] .

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 2 likes.