Papers
Topics
Authors
Recent
2000 character limit reached

Generalizing Quantum Tanner Codes (2405.07980v2)

Published 13 May 2024 in cs.IT and math.IT

Abstract: In this work, we present a generalization of the recently proposed quantum Tanner codes by Leverrier and Z\'emor, which contains a construction of asymptotically good quantum LDPC codes. Quantum Tanner codes have so far been constructed equivalently from groups, Cayley graphs, or square complexes constructed from groups. We show how to enlarge this to group actions on finite sets, Schreier graphs, and a family of square complexes which is the largest possible in a certain sense. Furthermore, we discuss how the proposed generalization opens up the possibility of finding other families of asymptotically good quantum codes.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (15)
  1. P. W. Shor, “Scheme for reducing decoherence in quantum computer memory,” Phys. Rev. A, vol. 52, no. 4, pp. R2493–R2496, Oct. 1995.
  2. A. Steane, “Multiple-particle interference and quantum error correction,” Proc. Roy. Soc. Lond. A, vol. 452, no. 1954, pp. 2551–2577, Nov. 1996.
  3. A. R. Calderbank and P. W. Shor, “Good quantum error-correcting codes exist,” Phys. Rev. A, vol. 54, no. 2, pp. 1098–1105, Aug. 1996.
  4. A. M. Steane, “Simple quantum error-correcting codes,” Phys. Rev. A, vol. 54, no. 6, pp. 4741–4751, Dec. 1996.
  5. D. Gottesman, “Class of quantum error-correcting codes saturating the quantum Hamming bound,” Phys. Rev. A, vol. 54, no. 3, pp. 1862–1868, Sep. 1996.
  6. A. R. Calderbank, E. M. Rains, P. W. Shor, and N. J. A. Sloane, “Quantum error correction via codes over GF(4),” IEEE Trans. Inf. Theory, vol. 44, no. 4, pp. 1369–1387, Jul. 1998.
  7. P. Panteleev and G. Kalachev, “Asymptotically good quantum and locally testable classical LDPC codes,” in Proc. 54th Annu. ACM Symp. Theory Comput. (STOC), Rome, Italy, Jun. 20–24, 2022, pp. 375–388.
  8. A. Leverrier and G. Zémor, “Quantum Tanner codes,” in Proc. 63th Annu. IEEE Symp. Found. Comp. Sci. (FOCS), Denver, CO, USA, Oct. 31–Nov. 03, 2022, pp. 872–883.
  9. I. Dinur, S. Evra, R. Livne, A. Lubotzky, and S. Mozes, “Locally testable codes with constant rate, distance, and locality,” in Proc. 54th Annu. ACM Symp. Theory Comput. (STOC), Rome, Italy, Jun. 20–24, 2022, pp. 357–374.
  10. F. Arute et al., “Quantum supremacy using a programmable superconducting processor,” Nature, vol. 574, no. 7779, pp. 505–510, Oct. 2019.
  11. A. Leverrier and G. Zémor, “Decoding quantum Tanner codes,” IEEE Trans. Inf. Theory, vol. 69, no. 8, pp. 5100–5115, Aug. 2023.
  12. P. Cayley, “Desiderata and suggestions: No. 1. The theory of groups,” Amer. J. Math., vol. 1, no. 1, pp. 50–52, 1878.
  13. J. L. Gross, “Every connected regular graph of even degree is a Schreier coset graph,” J. Comb. Theory, Ser. B, vol. 22, no. 3, pp. 227–232, Jun. 1977.
  14. A. Lubotzky, R. Phillips, and P. Sarnak, “Ramanujan graphs,” Combinatorica, vol. 8, no. 3, pp. 261–277, Sep. 1988.
  15. R. M. Tanner, “A recursive approach to low complexity codes,” IEEE Trans. Inf. Theory, vol. 27, no. 5, pp. 533–547, Sep. 1981.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.