Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 154 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

On Hagedorn wavepackets associated with different Gaussians (2405.07880v4)

Published 13 May 2024 in quant-ph, math-ph, math.MP, and physics.chem-ph

Abstract: Hagedorn functions are carefully constructed generalizations of Hermite functions to the setting of many-dimensional squeezed and coupled harmonic systems. Wavepackets formed by superpositions of Hagedorn functions have been successfully used to solve the time-dependent Schr\"{o}dinger equation exactly in harmonic systems and variationally in anharmonic systems. For evaluating typical observables, such as position or kinetic energy, it is sufficient to consider orthonormal Hagedorn functions with a single Gaussian center. Here, we instead derive various relations between Hagedorn bases associated with different Gaussians, including their overlaps, which are necessary for evaluating quantities nonlocal in time, such as time correlation functions needed for computing spectra. First, we use the Bogoliubov transformation to obtain commutation relations between the ladder operators associated with different Gaussians. Then, instead of using numerical quadrature, we employ these commutation relations to derive exact recurrence relations for the overlap integrals between Hagedorn functions with different Gaussian centers. Finally, we present numerical experiments that demonstrate the accuracy and efficiency of our algebraic method as well as its suitability to treat problems in spectroscopy and chemical dynamics.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (64)
  1. Heller E J 1975 J. Chem. Phys. 62 1544–1555
  2. Heller E J 1981 Acc. Chem. Res. 14 368–375
  3. Hagedorn G A 1981 Ann. Phys. (NY) 135 58–70
  4. Herman M F and Kluk E 1984 Chem. Phys. 91 27–34
  5. Ben-Nun M, Quenneville J and Martínez T J 2000 J. Phys. Chem. A 104 5161–5175
  6. Worth G A, Robb M A and Burghardt I 2004 Faraday Discuss. 127(0) 307–323
  7. Miller W H 2001 J. Phys. Chem. A 105 2942
  8. Werther M and Großmann F 2020 Phys. Rev. B 101 174315
  9. Lasser C and Lubich C 2020 Acta Numerica 29 229–401
  10. Vaníček J J L 2023 J. Chem. Phys. 159 014114
  11. Heller E J 2018 The semiclassical way to dynamics and spectroscopy (Princeton, NJ: Princeton University Press)
  12. Heller E J 1976 J. Chem. Phys. 64 63–73
  13. Coalson R D and Karplus M 1990 J. Chem. Phys. 93 3919–3930
  14. Lubich C 2008 From Quantum to Classical Molecular Dynamics: Reduced Models and Numerical Analysis 12th ed (Zürich: European Mathematical Society) ISBN 978-3037190678
  15. Grossmann F 2006 J. Chem. Phys. 125 014111
  16. Wehrle M, Šulc M and Vaníček J 2014 J. Chem. Phys. 140 244114
  17. Begušić T, Cordova M and Vaníček J 2019 J. Chem. Phys. 150 154117
  18. Golubev N V, Begušić T and Vaníček J 2020 Phys. Rev. Lett. 125 083001
  19. Begušić T and Vaníček J 2020 J. Chem. Phys. 153 024105
  20. Begušić T, Tapavicza E and Vaníček J 2022 J. Chem. Theory Comput. 18 3065–3074
  21. Scheidegger A, Vaníček J and Golubev N V 2022 J. Chem. Phys. 156 034104
  22. Moghaddasi Fereidani R and Vaníček J J L 2023 J. Chem. Phys. 159 094114
  23. Klētnieks E, Alonso Y C and Vaníček J J L 2023 J. Phys. Chem. A 127 8117–8125
  24. Moghaddasi Fereidani R and Vaníček J J L 2024 J. Chem. Phys. 160 044113
  25. Poulsen J A and Nyman G 2024 Entropy 26 412
  26. Dirac P 1947 The Principles of Quantum Mechanics International series of monographs on physics (Clarendon Press)
  27. Tannor D J 2007 Introduction to Quantum Mechanics: A Time-Dependent Perspective (Sausalito: University Science Books) ISBN 978-1891389238
  28. Hagedorn G A 1985 Ann. Henri Poincaré 42 363–374
  29. Hagedorn G A 1998 Ann. Phys. (NY) 269 77–104
  30. Faou E, Gradinaru V and Lubich C 2009 SIAM J. Sci. Comp. 31 3027–3041
  31. Gradinaru V, Hagedorn G A and Joye A 2010 J. Chem. Phys. 132 184108 (pages 8)
  32. Zhou Z 2014 J. Comput. Phys. 272 386–407
  33. Gradinaru V and Rietmann O 2021 J. Comput. Phys. 445 110581
  34. Ohsawa T and Leok M 2013 J. Phys. A 46 405201
  35. Gradinaru V and Hagedorn G A 2014 Numer. Math. 126 53–73
  36. Lasser C and Troppmann S 2014 J. Fourier Anal. Appl. 20 679–714
  37. Hagedorn G A 2015 Ann. Phys-new. York. 362 603–608
  38. Ohsawa T 2015 J. Math. Phys. 56 032103
  39. Punoševac P and Robinson S L 2016 J. Math. Phys. 57 092102
  40. Dietert H, Keller J and Troppmann S 2017 J. Math. Anal. Appl. 450 1317–1332
  41. Bourquin R 2017 Numerical Algorithms for Semiclassical Wavepackets Ph.D. thesis ETH Zürich
  42. Hagedorn G A and Lasser C 2017 SIAM J. Matrix Anal. Appl. 38 1560–1579
  43. Lasser C, Schubert R and Troppmann S 2018 J. Math. Phys. 59 082102
  44. Ohsawa T 2018 Nonlinearity 31 1807–1832
  45. Punoševac P and Robinson S L 2019 J. Math. Phys. 60 052106
  46. Ohsawa T 2019 J. Fourier Anal. Appl. 25 1513–1552
  47. Blanes S and Gradinaru V 2020 J. Comput. Phys. 405 109157
  48. Arnaiz V 2022 J. Spectr. Theory 12 745–812
  49. Miao B, Russo G and Zhou Z 2023 IMA J. Numer. Anal. 43 1221–1261
  50. Kargol A 1999 Annales de l’I.H.P. Physique théorique 71 339–357
  51. Hagedorn G and Joye A 2000 Ann. Henri Poincaré 1 837–883
  52. Gradinaru V, Hagedorn G A and Joye A 2010 J. Phys. Math. Theor. 43 474026
  53. Gradinaru V, Hagedorn G A and Joye A 2010 J. Chem. Phys. 132 184108
  54. Kieri E, Holmgren S and Karlsson H O 2012 J. Chem. Phys. 137 044111
  55. Bourquin R, Gradinaru V and Hagedorn G A 2012 J. Math. Chem. 50 602–619
  56. Gradinaru V and Rietmann O 2024 J. Comput. Phys. 509 113029
  57. Begušić T and Vaníček J 2020 J. Chem. Phys. 153 184110
  58. Wehrle M, Oberli S and Vaníček J 2015 J. Phys. Chem. A 119 5685
  59. Begušić T and Vaníček J 2021 Chimia 75 261
  60. Ma X and Rhodes W 1990 Phys. Rev. A 41(9) 4625–4631
  61. Feit M D, Fleck Jr J A and Steiger A 1982 J. Comp. Phys. 47 412
  62. Kosloff D and Kosloff R 1983 J. Comp. Phys. 52 35–53
  63. Tapavicza E 2019 J. Phys. Chem. Lett. 10 6003–6009
  64. Patoz A, Begušić T and Vaníček J 2018 J. Phys. Chem. Lett. 9 2367–2372
Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 3 tweets and received 2 likes.

Upgrade to Pro to view all of the tweets about this paper: