Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Finitely generated groups and harmonic functions of slow growth (2405.07688v1)

Published 13 May 2024 in math.GR, math.MG, and math.PR

Abstract: In this paper, we are mainly concerned with $(\mathbb{G},\mu)$-harmonic functions that grow at most polynomially, where $\mathbb{G}$ is a finitely generated group with a probability measure $\mu$. In the initial part of the paper, we focus on Lipschitz harmonic functions and how they descend onto finite index subgroups. We discuss the relations between Lipschitz harmonic functions and harmonic functions of linear growth and conclude that for groups of polynomial growth, they coincide. In the latter part of the paper, we specialise to positive harmonic functions and give a characterisation for strong Liouville property in terms of the Green's function. We show that the existence of a non-constant positive harmonic function of polynomial growth guarantees that the group cannot have polynomial growth.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 2 likes.

Upgrade to Pro to view all of the tweets about this paper: