Efficient Matrix Factorization Via Householder Reflections (2405.07649v2)
Abstract: Motivated by orthogonal dictionary learning problems, we propose a novel method for matrix factorization, where the data matrix $\mathbf{Y}$ is a product of a Householder matrix $\mathbf{H}$ and a binary matrix $\mathbf{X}$. First, we show that the exact recovery of the factors $\mathbf{H}$ and $\mathbf{X}$ from $\mathbf{Y}$ is guaranteed with $\Omega(1)$ columns in $\mathbf{Y}$ . Next, we show approximate recovery (in the $l\infty$ sense) can be done in polynomial time($O(np)$) with $\Omega(\log n)$ columns in $\mathbf{Y}$ . We hope the techniques in this work help in developing alternate algorithms for orthogonal dictionary learning.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.