Papers
Topics
Authors
Recent
2000 character limit reached

Fault-Tolerant Quantum LDPC Encoders (2405.07242v1)

Published 12 May 2024 in quant-ph, cs.IT, and math.IT

Abstract: We propose fault-tolerant encoders for quantum low-density parity check (LDPC) codes. By grouping qubits within a quantum code over contiguous blocks and applying preshared entanglement across these blocks, we show how transversal implementation can be realized. The proposed encoder reduces the error propagation while using multi-qubit gates and is applicable for both entanglement-unassisted and entanglement-assisted quantum LDPC codes.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (20)
  1. R. G. Gallager, “Low density parity check codes (Ph. D. dissertation),” Massachusetts Institute of Technology, Cambridge, MA, USA, 1963.
  2. Y. Kou, S. Lin, and M. P. Fossorier, “Low-density parity-check codes based on finite geometries: A rediscovery and new results,” IEEE Transactions on Information theory, vol. 47, no. 7, pp. 2711–2736, 2001.
  3. M. P. Fossorier, “Quasicyclic low-density parity-check codes from circulant permutation matrices,” IEEE transactions on Information theory, vol. 50, no. 8, pp. 1788–1793, 2004.
  4. D. MacKay, “Good error-correcting codes based on very sparse matrices,” IEEE Trans. Information Theory, vol. 45, no. 2, pp. 399–431, 1999.
  5. D. Gottesman, “Stabilizer codes and quantum error correction (Ph. D. dissertation),” California Institute of Technology, CA, USA, 1997.
  6. T. Brun, I. Devetak, and M.-H. Hsieh, “Correcting quantum errors with entanglement,” Science, vol. 314, no. 5798, pp. 436–439, 2006.
  7. P. J. Nadkarni and S. S. Garani, “Encoding of nonbinary entanglement-unassisted and assisted stabilizer codes,” IEEE Transactions on Quantum Engineering, vol. 2, pp. 1–22, 2021.
  8. S. S. Garani, P. J. Nadkarni, and A. Raina, “Theory behind quantum error correcting codes: An overview,” Journal of the Indian Institute of Science, vol. 103, no. 2, pp. 449–495, 2023.
  9. J. Chen, Y. Huang, C. Feng, and R. Chen, “Entanglement-assisted quantum MDS codes constructed from negacyclic codes,” Quantum Information Processing, vol. 16, pp. 1–22, 2017.
  10. K. Guenda, S. Jitman, and T. A. Gulliver, “Constructions of good entanglement-assisted quantum error correcting codes,” Designs, Codes and Cryptography, vol. 86, pp. 121–136, 2018.
  11. Y. Liu, R. Li, L. Lv, and Y. Ma, “Application of constacyclic codes to entanglement-assisted quantum maximum distance separable codes,” Quantum Information Processing, vol. 17, no. 8, p. 210, 2018.
  12. J. Qian and L. Zhang, “On MDS linear complementary dual codes and entanglement-assisted quantum codes,” Designs, Codes and Cryptography, vol. 86, pp. 1565–1572, 2018.
  13. C. Galindo, F. Hernando, R. Matsumoto, and D. Ruano, “Entanglement-assisted quantum error-correcting codes over arbitrary finite fields,” Quantum Information Processing, vol. 18, no. 4, p. 116, 2019.
  14. L. Luo, Z. Ma, Z. Wei, and R. Leng, “Non-binary entanglement-assisted quantum stabilizer codes,” Sci. China Inf. Sci, vol. 60, no. 4, 2016.
  15. P. J. Nadkarni and S. S. Garani, “Entanglement-assisted Reed–Solomon codes over qudits: Theory and architecture,” Quantum Information Processing, vol. 20, pp. 1–68, 2021.
  16. M.-H. Hsieh, T. A. Brun, and I. Devetak, “Entanglement-assisted quantum quasicyclic low-density parity-check codes,” Physical Review A, vol. 79, no. 3, p. 032340, 2009.
  17. M. Hagiwara and H. Imai, “Quantum quasi-cyclic LDPC codes,” in 2007 IEEE International Symposium on Information Theory.   IEEE, 2007, pp. 806–810.
  18. P. Panteleev and G. Kalachev, “Quantum LDPC codes with almost linear minimum distance,” IEEE Transactions on Information Theory, vol. 68, no. 1, p. 213–229, Jan. 2022.
  19. D. Gottesman, “An introduction to quantum error correction and fault-tolerant quantum computation,” https://arxiv.org/abs/0904.2557, 2009.
  20. Y. Hwang, “Fault-tolerant circuit synthesis for universal fault-tolerant quantum computing,” https://arxiv.org/abs/2206.02691, 2022.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 1 like about this paper.