2000 character limit reached
Fault-Tolerant Quantum LDPC Encoders (2405.07242v1)
Published 12 May 2024 in quant-ph, cs.IT, and math.IT
Abstract: We propose fault-tolerant encoders for quantum low-density parity check (LDPC) codes. By grouping qubits within a quantum code over contiguous blocks and applying preshared entanglement across these blocks, we show how transversal implementation can be realized. The proposed encoder reduces the error propagation while using multi-qubit gates and is applicable for both entanglement-unassisted and entanglement-assisted quantum LDPC codes.
- R. G. Gallager, “Low density parity check codes (Ph. D. dissertation),” Massachusetts Institute of Technology, Cambridge, MA, USA, 1963.
- Y. Kou, S. Lin, and M. P. Fossorier, “Low-density parity-check codes based on finite geometries: A rediscovery and new results,” IEEE Transactions on Information theory, vol. 47, no. 7, pp. 2711–2736, 2001.
- M. P. Fossorier, “Quasicyclic low-density parity-check codes from circulant permutation matrices,” IEEE transactions on Information theory, vol. 50, no. 8, pp. 1788–1793, 2004.
- D. MacKay, “Good error-correcting codes based on very sparse matrices,” IEEE Trans. Information Theory, vol. 45, no. 2, pp. 399–431, 1999.
- D. Gottesman, “Stabilizer codes and quantum error correction (Ph. D. dissertation),” California Institute of Technology, CA, USA, 1997.
- T. Brun, I. Devetak, and M.-H. Hsieh, “Correcting quantum errors with entanglement,” Science, vol. 314, no. 5798, pp. 436–439, 2006.
- P. J. Nadkarni and S. S. Garani, “Encoding of nonbinary entanglement-unassisted and assisted stabilizer codes,” IEEE Transactions on Quantum Engineering, vol. 2, pp. 1–22, 2021.
- S. S. Garani, P. J. Nadkarni, and A. Raina, “Theory behind quantum error correcting codes: An overview,” Journal of the Indian Institute of Science, vol. 103, no. 2, pp. 449–495, 2023.
- J. Chen, Y. Huang, C. Feng, and R. Chen, “Entanglement-assisted quantum MDS codes constructed from negacyclic codes,” Quantum Information Processing, vol. 16, pp. 1–22, 2017.
- K. Guenda, S. Jitman, and T. A. Gulliver, “Constructions of good entanglement-assisted quantum error correcting codes,” Designs, Codes and Cryptography, vol. 86, pp. 121–136, 2018.
- Y. Liu, R. Li, L. Lv, and Y. Ma, “Application of constacyclic codes to entanglement-assisted quantum maximum distance separable codes,” Quantum Information Processing, vol. 17, no. 8, p. 210, 2018.
- J. Qian and L. Zhang, “On MDS linear complementary dual codes and entanglement-assisted quantum codes,” Designs, Codes and Cryptography, vol. 86, pp. 1565–1572, 2018.
- C. Galindo, F. Hernando, R. Matsumoto, and D. Ruano, “Entanglement-assisted quantum error-correcting codes over arbitrary finite fields,” Quantum Information Processing, vol. 18, no. 4, p. 116, 2019.
- L. Luo, Z. Ma, Z. Wei, and R. Leng, “Non-binary entanglement-assisted quantum stabilizer codes,” Sci. China Inf. Sci, vol. 60, no. 4, 2016.
- P. J. Nadkarni and S. S. Garani, “Entanglement-assisted Reed–Solomon codes over qudits: Theory and architecture,” Quantum Information Processing, vol. 20, pp. 1–68, 2021.
- M.-H. Hsieh, T. A. Brun, and I. Devetak, “Entanglement-assisted quantum quasicyclic low-density parity-check codes,” Physical Review A, vol. 79, no. 3, p. 032340, 2009.
- M. Hagiwara and H. Imai, “Quantum quasi-cyclic LDPC codes,” in 2007 IEEE International Symposium on Information Theory. IEEE, 2007, pp. 806–810.
- P. Panteleev and G. Kalachev, “Quantum LDPC codes with almost linear minimum distance,” IEEE Transactions on Information Theory, vol. 68, no. 1, p. 213–229, Jan. 2022.
- D. Gottesman, “An introduction to quantum error correction and fault-tolerant quantum computation,” https://arxiv.org/abs/0904.2557, 2009.
- Y. Hwang, “Fault-tolerant circuit synthesis for universal fault-tolerant quantum computing,” https://arxiv.org/abs/2206.02691, 2022.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.