Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

New Procedure for Evaluation of U(3) Coupling and Recoupling Coefficients (2405.06843v1)

Published 10 May 2024 in math-ph, math.MP, nucl-th, and quant-ph

Abstract: A simple method to calculate Wigner coupling coefficients and Racah recoupling coefficients for U(3) in two group-subgroup chains is presented. While the canonical U(3)->U(2)->U(1) coupling and recoupling coefficients are applicable to any system that respects U(3) symmetry, the U(3)->SO(3) coupling coefficients are more specific to nuclear structure studies. This new procedure precludes the use of binomial coefficients and alternating sums which were used in the 1973 formulation of Draayer and Akiyama, and hence provides faster and more accurate output of requested results. The resolution of the outer multiplicity is based on the null space concept of the U(3) generators proposed by Arne Alex et al., whereas the inner multiplicity in the angular momentum subgroup chain is obtained from the dimension of the null space of the SO(3) raising operator. A C++ library built on this new methodology will be published in a complementary journal that specializes in the management and distribution of such programs.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (31)
  1. G. Cantor, “Ueber eine Eigenschaft des Inbegriffes aller reellen algebraischen Zahlen,” Journal für die reine und angewandte Mathematik (in German), vol. 77, p. 258, 1874.
  2. P. E. Johnson, A History of Set Theory. Prindle, Weber & Schmidt complementary series in mathematics, Prindle, Weber & Schmidt, 1972.
  3. J. Dauben, Georg Cantor: His Mathematics and Philosophy of the Infinite. Harvard University Press, 1979.
  4. A. N. Kolmogorov and S. V. Fomin, Introductory Real Analysis (Rev. English ed.). New York: Dover Publications, 1970.
  5. E. P. Wigner, “On the Consequences of the Symmetry of the Nuclear Hamiltonian on the Spectroscopy of Nuclei,” Physical Review, vol. 51, p. 106, 1937.
  6. J. Elliott, “Collective motion in the nuclear shell model. I. Classification schemes for states of mixed configurations,” Proceedings of the Royal Society A, vol. 245, p. 128, 1958.
  7. J. P. Elliott, “Collective Motion in the Nuclear Shell Model. II. The Introduction of Intrinsic Wave-Functions,” Proceedings of the Royal Society A, vol. 245, p. 562, 1958.
  8. J. P. Elliott and M. Harvey, “Selected Topics in Nuclear Theory,” International Atomic Energy Agency, Vienna, 1963.
  9. J. P. Draayer and Y. Akiyama, “Wigner and Racah coefficients for SU3,” Journal of Mathematical Physics, vol. 14, p. 1904, 1973.
  10. Y. Akiyama and J. P. Draayer, “A User’s Guide to Fortran Programs for Wigner and Racah Coefficients of SU(3),” Computer Physics Communications, vol. 5, p. 405, 1973.
  11. D. J. Rowe and C. Bahri, “Clebsch–Gordan coefficients of SU(3) in SU(2) and SO(3) bases,” Journal of Mathematical Physics, vol. 41, no. 9, pp. 6544–6565, 2000.
  12. C. Bahri, D. Rowe, and J. Draayer, “Programs for generating Clebsch–Gordan coefficients of SU(3) in SU(2) and SO(3) bases,” Computer Physics Communications, vol. 159, no. 2, pp. 121–143, 2004.
  13. T. Dytrych and D. Langr and J. P. Draayer and K. D. Launey and D. Gazda, “SU3lib: A C++ library for accurate computation of Wigner and Racah coefficients of SU(3),” Computer Physics Communications, vol. 269, p. 108137, 2021.
  14. A. Alex, M. Kalus, A. Huckleberry, and J. von Delft, “A numerical algorithm for the explicit calculation of SU(N) and SL(N,ℂ)𝑁ℂ(N,\mathbb{C})( italic_N , roman_ℂ )SL(N,ℂ)𝑁ℂ(N,\mathbb{C})( italic_N , roman_ℂ ) Clebsch–Gordan coefficients,” Journal of Mathematical Physics, vol. 52, p. 023507, 02 2011.
  15. J. Q. Chen, Group Representation Theory for Physicists. World Scientific, Singapore, 1989.
  16. F. Pan, S. Yuan, K. D. Launey, and J. P. Draayer, “A new procedure for constructing basis vectors of SU(3)⊃superset-of\supset⊃SO(3),” Nuclear Physics A, vol. 952, pp. 70–99, 2016.
  17. J. D. Louck and L. C. Biedenharn, “Canonical Unit Adjoint Tensor Operators in U(n),” Journal of Mathematical Physics, vol. 11, p. 2368, 1970.
  18. L. C. Biedenharn, J. D. Louck, E. Chacón, and M. Ciftan, “On the structure of the canonical tensor operators in the unitary groups. I. An extension of the pattern calculus rules and the canonical splitting in U(3),” Journal of Mathematical Physics, vol. 13, p. 1957, 1972.
  19. L. C. Biedenharn and J. D. Louck, “On the structure of the canonical tensor operators in the unitary groups. II. The tensor operators in U(3) characterized by maximal null space,” Journal of Mathematical Physics, vol. 13, p. 1985, 1972.
  20. J. D. Louck and L. C. Biedenharn, “On the structure of the canonical tensor operators in the unitary groups. III. Further developments of the boson polynomials and their implications,” Journal of Mathematical Physics, vol. 14, p. 1336, 1973.
  21. L. M. Gel’fand and M. L. Zetlin, “Finite-dimensional representations of the group of unimodular matrices,” Dokl. Akad. Nauk. SSSR, vol. 71, p. 825, 1950.
  22. J. Darai, J. Cseh, and D. Jenkins, “Shape isomers and clusterization in the Si28superscriptSi28\rm{}^{28}Sistart_FLOATSUPERSCRIPT 28 end_FLOATSUPERSCRIPT roman_Si nucleus,” Phys. Rev. C, vol. 86, p. 064309, 2012.
  23. P. Dang, G. Riczu, and J. Cseh, “Shape isomers of α𝛼\alphaitalic_α-like nuclei in terms of the multiconfigurational dynamical symmetry,” Phys. Rev. C, vol. 107, p. 044315, 2023.
  24. J. Escher and J. P. Draayer, “Fermion realization of the nuclear Sp(6,R) model,” Journal of Mathematical Physics, vol. 39, p. 5123, 1998.
  25. D. J. Millener, “A note on recoupling coefficients for SU(3),” Journal of Mathematical Physics, vol. 19, no. 7, pp. 1513–1514, 1978.
  26. J. P. Draayer, D. L. Pursey, and S. A. Williams, “Elliott Angular Momentum States Projected from the Gel’fand U(3) Basis,” Nuclear Physics A, vol. 119, p. 577, 1968.
  27. G. Rosensteel and D. Rowe, “On the shape of deformed nuclei,” Annals of Physics, vol. 104, no. 1, pp. 134–144, 1977.
  28. H. Naqvi and J. Draayer, “Shell-model operator for K-band splitting,” Nuclear Physics A, vol. 516, no. 2, pp. 351–364, 1990.
  29. V. K. B. Kota, SU⁢(3)SU3\rm SU(3)roman_SU ( 3 ) Symmetry in Atomic Nuclei. Springer Singapore, 2020.
  30. F. Pan and J. P. Draayer, “Complementary group resolution of the SU(n) outer multiplicity problem. I. The Littlewood rules and a complementary U(2n-2) group structure,” Journal of Mathematical Physics, vol. 39, no. 10, pp. 5631–5641, 1998.
  31. F. Pan, L. Bao, Y. Z. Zhang, and J. P. Draayer, “Construction of basis vectors for symmetric irreducible representations of O(5)⊃superset-of\supset⊃O(3),” The European Physical Journal Plus, vol. 129, p. 169, 2014.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: