Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 177 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Combining complex conjugation, time-reversal, and spin symmetry projection of coupled cluster wave functions (2405.06776v2)

Published 10 May 2024 in cond-mat.str-el and physics.chem-ph

Abstract: Complex conjugation symmetry breaking and restoration generate two non-orthogonal configurations at the Hartree-Fock level that can capture static correlation naturally. In conjunction with broken spin-symmetry coupled cluster theory, the symmetry-projected wave function shows good agreement with full configuration interaction in beryllium hydride insertion, lithium fluoride dissociation, and symmetric stretching of tetrahedral H$_4$. By adding spin flip projection, we can also recover time reversal symmetry in the same coupled cluster framework.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (21)
  1. R. Seeger and J. A. Pople, Self‐consistent molecular orbital methods. XVIII. Constraints and stability in Hartree–Fock theory, J. Chem. Phys. 66, 3045 (1977).
  2. H. Fukutome, Unrestricted Hartree-Fock theory and its applications to molecules and chemical reactions, Int. J. Quantum Chem. 20, 955 (1981).
  3. J. L. Stuber and J. Paldus, Fundamental World of Quantum Chemistry: A Tribute Volume to the Memory of Per-Olov Löwdin (Kluwer, New York, 2003).
  4. D. W. Small, E. J. Sundstrom, and M. Head-Gordon, Restricted Hartree Fock using complex-valued orbitals: A long-known but neglected tool in electronic structure theory, J. Chem. Phys. 142, 024104 (2015).
  5. L. C. Jake, T. M. Henderson, and G. E. Scuseria, Hartree-Fock symmetry breaking around conical intersections, J. Chem. Phys. 148, 024109 (2018).
  6. H. G. A. Burton, M. Gross, and A. J. W. Thom, Holomorphic Hartree–Fock Theory: The Nature of Two-Electron Problems, J. Chem. Theory Comput. 14, 607 (2018).
  7. T. M. Henderson, C. A. Jiménez-Hoyos, and G. E. Scuseria, Magnetic structure of density matrices, J. Chem. Theory Comput. 14, 649 (2018).
  8. J. Hendekoviá, Method of complex molecular orbitals, Int. J. Quantum Chem. 8, 799 (1974).
  9. T. Tsuchimochi and S. Ten-no, Communication: Configuration interaction combined with spin-projection for strongly correlated molecular electronic structures, J. Chem. Phys. 144, 011101 (2016).
  10. R. Song, T. M. Henderson, and G. E. Scuseria, A power series approximation in symmetry projected coupled cluster theory, J. Chem. Phys. 156, 104105 (2022).
  11. T. Tsuchimochi and S. L. Ten-no, Orbital-invariant spin-extended approximate coupled-cluster for multi-reference systems, J. Chem. Phys. 149, 044109 (2018).
  12. T. Tsuchimochi and S. L. Ten-no, Second-Order Perturbation Theory with Spin-Symmetry-Projected Hartree–Fock, J. Chem. Theory Comput. 15, 6688 (2019).
  13. K. Schmid, On the use of general symmetry-projected Hartree–Fock–Bogoliubov configurations in variational approaches to the nuclear many-body problem, Prog. Part. Nucl. Phys. 52, 565 (2004).
  14. E. P. Wigner, Normal Form of Antiunitary Operators, J. Math. Phys. 1, 409 (1960).
  15. Y. Smeyers, Etude d’une fonction unrestricted—Hartree-Fock ameliorée, An. Fis. Madrid 67, 17 (1971).
  16. Y. G. Smeyers, The half projected Hartree-Fock model for determining singlet excited states. (Academic Press, 2000) pp. 253–270.
  17. D. J. Thouless, Stability conditions and nuclear rotations in the Hartree-Fock theory, Nucl. Phys. 21, 225 (1960).
  18. H. G. A. Burton and A. J. W. Thom, Reaching Full Correlation through Nonorthogonal Configuration Interaction: A Second-Order Perturbative Approach, J. Chem. Theory Comput. 16, 5586 (2020).
  19. J. Nite and C. A. Jiménez-Hoyos, Efficient Multi-Configurational Wavefunction Method with Dynamical Correlation Using Non-Orthogonal Configuration Interaction Singles and Doubles (NOCISD), ChemRxiv  (2019).
  20. C. A. Jiménez-Hoyos, T. M. Henderson, and G. E. Scuseria, Generalized Hartree–Fock description of molecular dissociation, J. Chem. Theory Comput. 7, 2667 (2011).
  21. C. A. Jiménez-Hoyos, R. Rodríguez-Guzmán, and G. E. Scuseria, Excited electronic states from a variational approach based on symmetry-projected Hartree-Fock configurations, J. Chem. Phys. 139, 224110 (2013).

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 3 tweets and received 11 likes.

Upgrade to Pro to view all of the tweets about this paper: