Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 126 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 127 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Non-Linear Dynamics and Critical Phenomena in the Holographic Landscape of Weyl Semimetals (2405.06484v2)

Published 10 May 2024 in hep-th and cond-mat.str-el

Abstract: This study presents a detailed analysis of critical phenomena in a holographic Weyl semi-metal (WSM) using the $D3/D7$ brane configuration. The research explores the non-linear response of the longitudinal current ( J ) when subjected to an external electric field ( E ) at both zero and finite temperatures. At zero temperature, the study identifies a potential quantum phase transition in the ( J )-( E ) relationship, driven by background parameters the particle mass, and axial gauge potential. This transition is characterized by a unique reconnection phenomenon resulting from the interplay between WSM-like and conventional nonlinear conducting behaviors, indicating a quantum phase transition. Additionally, at non-zero temperature with dissipation, the system demonstrates first- and second-order phase transitions as the electric field and axial gauge potential are varied. The longitudinal conductivity is used as an order parameter to identify the current-driven phase transition. Numerical analysis reveals critical exponents in this non-equilibrium phase transition that show similarities to mean-field values observed in metallic systems.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (51)
  1. N. P. Armitage, E. J. Mele,  and A. Vishwanath, “Weyl and dirac semimetals in three-dimensional solids,” Rev. Mod. Phys. 90, 015001 (2018a).
  2. Xiangang Wan, Ari M. Turner, Ashvin Vishwanath,  and Sergey Y. Savrasov, “Topological semimetal and fermi-arc surface states in the electronic structure of pyrochlore iridates,” Phys. Rev. B 83, 205101 (2011).
  3. A. A. Burkov and Leon Balents, “Weyl Semimetal in a Topological Insulator Multilayer,” Phys. Rev. Lett. 107, 127205 (2011), arXiv:1105.5138 [cond-mat.mes-hall] .
  4. Pavan Hosur and Xiaoliang Qi, “Recent developments in transport phenomena in Weyl semimetals,” Comptes Rendus Physique 14, 857–870 (2013), arXiv:1309.4464 [cond-mat.str-el] .
  5. A.M. Black-Schaffer T.O. Wehling and A.V. Balatsky, “Dirac materials,” Advances in Physics 63, 1–76 (2014), https://doi.org/10.1080/00018732.2014.927109 .
  6. Chao-Xing Liu, Peng Ye,  and Xiao-Liang Qi, “Chiral gauge field and axial anomaly in a Weyl semimetal,” Phys. Rev. B 87, 235306 (2013), [Erratum: Phys.Rev.B 92, 119904 (2015)], arXiv:1204.6551 [cond-mat.str-el] .
  7. B. Q. Lv, H. M. Weng, B. B. Fu, X. P. Wang, H. Miao, J. Ma, P. Richard, X. C. Huang, L. X. Zhao, G. F. Chen, Z. Fang, X. Dai, T. Qian,  and H. Ding, “Experimental discovery of weyl semimetal taas,” Phys. Rev. X 5, 031013 (2015a).
  8. Xiaochun Huang, Lingxiao Zhao, Yujia Long, Peipei Wang, Dong Chen, Zhanhai Yang, Hui Liang, Mianqi Xue, Hongming Weng, Zhong Fang, Xi Dai,  and Genfu Chen, “Observation of the chiral-anomaly-induced negative magnetoresistance in 3d weyl semimetal taas,” Phys. Rev. X 5, 031023 (2015).
  9. Su-Yang Xu, Ilya Belopolski, Nasser Alidoust, Madhab Neupane, Guang Bian, Chenglong Zhang, Raman Sankar, Guoqing Chang, Zhujun Yuan, Chi-Cheng Lee, Shin-Ming Huang, Hao Zheng, Jie Ma, Daniel S. Sanchez, BaoKai Wang, Arun Bansil, Fangcheng Chou, Pavel P. Shibayev, Hsin Lin, Shuang Jia,  and M. Zahid Hasan, “Discovery of a weyl fermion semimetal and topological fermi arcs,” Science 349, 613–617 (2015), https://www.science.org/doi/pdf/10.1126/science.aaa9297 .
  10. D. T. Son and B. Z. Spivak, “Chiral Anomaly and Classical Negative Magnetoresistance of Weyl Metals,” Phys. Rev. B 88, 104412 (2013), arXiv:1206.1627 [cond-mat.mes-hall] .
  11. A. A. Burkov, “Chiral anomaly and transport in Weyl metals,” J. Phys. Condens. Matter 27, 113201 (2015), arXiv:1502.07609 [cond-mat.mes-hall] .
  12. Fei-Ye Li, Xi Luo, Xi Dai, Yue Yu, Fan Zhang,  and Gang Chen, “Hybrid weyl semimetal,” Phys. Rev. B 94, 121105 (2016).
  13. Francesco M. D. Pellegrino, Mikhail I. Katsnelson,  and Marco Polini, “Helicons in weyl semimetals,” Phys. Rev. B 92, 201407 (2015).
  14. Philip J. W. Moll et al., “Magnetic torque anomaly in the quantum limit of weyl semimetals,” Nature Communications 7, 12492 (2016).
  15. E. V. Gorbar, V. A. Miransky, I. A. Shovkovy,  and P. O. Sukhachov, “Nonlocal transport in weyl semimetals in the hydrodynamic regime,” Phys. Rev. B 98, 035121 (2018).
  16. K. A. Madsen, P. W. Brouwer,  and M. Breitkreiz, “Equilibrium current in a weyl semimetal–superconductor heterostructure,” Phys. Rev. B 104, 035109 (2021).
  17. Aritra Lahiri and Soumya Bera, “Dynamical quantum phase transitions in weyl semimetals,” Phys. Rev. B 99, 174311 (2019).
  18. Jing-Rong Wang, Guo-Zhu Liu,  and Chang-Jin Zhang, “Topological quantum critical point in a triple-weyl semimetal: Non-fermi-liquid behavior and instabilities,” Phys. Rev. B 99, 195119 (2019).
  19. J. H. Pixley, David A. Huse,  and S. Das Sarma, “Rare-region-induced avoided quantum criticality in disordered three-dimensional dirac and weyl semimetals,” Phys. Rev. X 6, 021042 (2016).
  20. Xin Li, Jing-Rong Wang,  and Guo-Zhu Liu, “Phase transition with trivial quantum criticality in an anisotropic weyl semimetal,” Phys. Rev. B 97, 184508 (2018).
  21. Michael V Berry, “Quantal phase factors accompanying adiabatic changes,” Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences 392, 45–57 (1984).
  22. Di Xiao, Ming-Che Chang,  and Qian Niu, “Berry phase effects on electronic properties,” Reviews of Modern Physics 82, 1959 (2010).
  23. N. P. Armitage, E. J. Mele,  and A. Vishwanath, “Weyl and Dirac semimetals in three-dimensional solids,” Rev. Mod. Phys. 90, 015001 (2018b), arXiv:1705.01111 [cond-mat.mes-hall] .
  24. J. Maldacena, “The large n limit of superconformal field theories and supergravity,” Int. J. Theor. Phys. 38, 1113–1133 (1999).
  25. E. Witten, “Anti-de sitter space and holography,” Adv. Theor. Math. Phys. 2, 253–291 (1998).
  26. S. S. Gubser, I. R. Klebanov,  and A. M. Polyakov, “Gauge theory correlators from non-critical string theory,” Phys. Lett. B 428, 105–114 (1998).
  27. Sean A. Hartnoll, “Lectures on holographic methods for condensed matter physics,” Class. Quant. Grav. 26, 224002 (2009), arXiv:0903.3246 [hep-th] .
  28. Christopher P. Herzog, “Lectures on Holographic Superfluidity and Superconductivity,” J. Phys. A 42, 343001 (2009), arXiv:0904.1975 [hep-th] .
  29. Karl Landsteiner, Yan Liu,  and Ya-Wen Sun, “Quantum phase transition between a topological and a trivial semimetal from holography,” Phys. Rev. Lett. 116, 081602 (2016), arXiv:1511.05505 [hep-th] .
  30. Karl Landsteiner and Yan Liu, “The holographic Weyl semi-metal,” Phys. Lett. B 753, 453–457 (2016), arXiv:1505.04772 [hep-th] .
  31. Christian Copetti, Karl Landsteiner,  and Mariano Fernandez, “Axial Hall effect and universality of holographic Weyl semi-metals,” JHEP 02, 138 (2017), arXiv:1611.08125 [hep-th] .
  32. Gianluca Grignani, Andrea Marini, Francisco Peña-Benitez,  and Stefano Speziali, “AC conductivity for a holographic Weyl Semimetal,” JHEP 03, 125 (2017), arXiv:1612.00486 [cond-mat.str-el] .
  33. Xuanting Ji, Yan Liu, Ya-Wen Sun,  and Yun-Long Zhang, “A Weyl-Z2 semimetal from holography,” JHEP 12, 066 (2021), arXiv:2109.05993 [hep-th] .
  34. Umut Gursoy, Vivian Jacobs, Erik Plauschinn, Henk Stoof,  and Stefan Vandoren, “Holographic models for undoped Weyl semimetals,” JHEP 04, 127 (2013), arXiv:1209.2593 [hep-th] .
  35. Kazem Bitaghsir Fadafan, Andy O’Bannon, Ronnie Rodgers,  and Matthew Russell, “A Weyl semimetal from AdS/CFT with flavour,” JHEP 04, 162 (2021), arXiv:2012.11434 [hep-th] .
  36. Nathan Seiberg and Edward Witten, “String theory and noncommutative geometry,” JHEP 09, 032 (1999), arXiv:hep-th/9908142 .
  37. Keun-Young Kim, Jonathan P. Shock,  and Javier Tarrio, “The open string membrane paradigm with external electromagnetic fields,” JHEP 06, 017 (2011), arXiv:1103.4581 [hep-th] .
  38. Andreas Karch and Andy O’Bannon, “Metallic AdS/CFT,” JHEP 09, 024 (2007), arXiv:0705.3870 [hep-th] .
  39. Shin Nakamura, “Negative Differential Resistivity from Holography,” Prog. Theor. Phys. 124, 1105–1114 (2010), arXiv:1006.4105 [hep-th] .
  40. Shin Nakamura, “Nonequilibrium Phase Transitions and Nonequilibrium Critical Point from AdS/CFT,” Phys. Rev. Lett. 109, 120602 (2012), arXiv:1204.1971 [hep-th] .
  41. Mohammad Ali-Akbari and Ali Vahedi, “Non-equilibrium Phase Transition from AdS/CFT,” Nucl. Phys. B 877, 95–106 (2013), arXiv:1305.3713 [hep-th] .
  42. Masataka Matsumoto and Shin Nakamura, “Critical Exponents of Nonequilibrium Phase Transitions in AdS/CFT Correspondence,” Phys. Rev. D 98, 106027 (2018), arXiv:1804.10124 [hep-th] .
  43. Arnab Kundu and Sandipan Kundu, “Steady-state Physics, Effective Temperature Dynamics in Holography,” Phys. Rev. D 91, 046004 (2015), arXiv:1307.6607 [hep-th] .
  44. Arnab Kundu, “Steady States, Thermal Physics, and Holography,” Adv. High Energy Phys. 2019, 2635917 (2019).
  45. Andreas Karch, Andy O’Bannon,  and Kostas Skenderis, “Holographic renormalization of probe D-branes in AdS/CFT,” JHEP 04, 015 (2006), arXiv:hep-th/0512125 .
  46. Kristan Jensen, Andreas Karch,  and Ethan G. Thompson, “A Holographic Quantum Critical Point at Finite Magnetic Field and Finite Density,” JHEP 05, 015 (2010), arXiv:1002.2447 [hep-th] .
  47. B. Q. Lv, H. M. Weng, B. B. Fu, X. P. Wang, H. Miao, J. Ma, P. Richard, X. C. Huang, L. X. Zhao, G. F. Chen, Z. Fang, X. Dai, T. Qian,  and H. Ding, “Experimental discovery of weyl semimetal taas,” Phys. Rev. X 5, 031013 (2015b).
  48. Cheng Guo, Viktar S. Asadchy, Bo Zhao,  and Shanhui Fan, “Light control with Weyl semimetals,”   (2022), arXiv:2209.00701 [physics.optics] .
  49. Huichao Wang and Jian Wang, “Electron transport in Dirac and Weyl semimetals,”   (2018), arXiv:1809.03282 .
  50. Tobias Holder, Chia-Wei Huang,  and Pavel M. Ostrovsky, “Electronic properties of disordered weyl semimetals at charge neutrality,” Phys. Rev. B 96, 174205 (2017).
  51. Shuta Ishigaki, Shunichiro Kinoshita,  and Masataka Matsumoto, “Dynamical stability and filamentary instability in holographic conductors,” JHEP 04, 173 (2022), arXiv:2112.11677 [hep-th] .
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 3 likes.

Upgrade to Pro to view all of the tweets about this paper: