Non-Linear Dynamics and Critical Phenomena in the Holographic Landscape of Weyl Semimetals (2405.06484v2)
Abstract: This study presents a detailed analysis of critical phenomena in a holographic Weyl semi-metal (WSM) using the $D3/D7$ brane configuration. The research explores the non-linear response of the longitudinal current ( J ) when subjected to an external electric field ( E ) at both zero and finite temperatures. At zero temperature, the study identifies a potential quantum phase transition in the ( J )-( E ) relationship, driven by background parameters the particle mass, and axial gauge potential. This transition is characterized by a unique reconnection phenomenon resulting from the interplay between WSM-like and conventional nonlinear conducting behaviors, indicating a quantum phase transition. Additionally, at non-zero temperature with dissipation, the system demonstrates first- and second-order phase transitions as the electric field and axial gauge potential are varied. The longitudinal conductivity is used as an order parameter to identify the current-driven phase transition. Numerical analysis reveals critical exponents in this non-equilibrium phase transition that show similarities to mean-field values observed in metallic systems.
- N. P. Armitage, E. J. Mele, and A. Vishwanath, “Weyl and dirac semimetals in three-dimensional solids,” Rev. Mod. Phys. 90, 015001 (2018a).
- Xiangang Wan, Ari M. Turner, Ashvin Vishwanath, and Sergey Y. Savrasov, “Topological semimetal and fermi-arc surface states in the electronic structure of pyrochlore iridates,” Phys. Rev. B 83, 205101 (2011).
- A. A. Burkov and Leon Balents, “Weyl Semimetal in a Topological Insulator Multilayer,” Phys. Rev. Lett. 107, 127205 (2011), arXiv:1105.5138 [cond-mat.mes-hall] .
- Pavan Hosur and Xiaoliang Qi, “Recent developments in transport phenomena in Weyl semimetals,” Comptes Rendus Physique 14, 857–870 (2013), arXiv:1309.4464 [cond-mat.str-el] .
- A.M. Black-Schaffer T.O. Wehling and A.V. Balatsky, “Dirac materials,” Advances in Physics 63, 1–76 (2014), https://doi.org/10.1080/00018732.2014.927109 .
- Chao-Xing Liu, Peng Ye, and Xiao-Liang Qi, “Chiral gauge field and axial anomaly in a Weyl semimetal,” Phys. Rev. B 87, 235306 (2013), [Erratum: Phys.Rev.B 92, 119904 (2015)], arXiv:1204.6551 [cond-mat.str-el] .
- B. Q. Lv, H. M. Weng, B. B. Fu, X. P. Wang, H. Miao, J. Ma, P. Richard, X. C. Huang, L. X. Zhao, G. F. Chen, Z. Fang, X. Dai, T. Qian, and H. Ding, “Experimental discovery of weyl semimetal taas,” Phys. Rev. X 5, 031013 (2015a).
- Xiaochun Huang, Lingxiao Zhao, Yujia Long, Peipei Wang, Dong Chen, Zhanhai Yang, Hui Liang, Mianqi Xue, Hongming Weng, Zhong Fang, Xi Dai, and Genfu Chen, “Observation of the chiral-anomaly-induced negative magnetoresistance in 3d weyl semimetal taas,” Phys. Rev. X 5, 031023 (2015).
- Su-Yang Xu, Ilya Belopolski, Nasser Alidoust, Madhab Neupane, Guang Bian, Chenglong Zhang, Raman Sankar, Guoqing Chang, Zhujun Yuan, Chi-Cheng Lee, Shin-Ming Huang, Hao Zheng, Jie Ma, Daniel S. Sanchez, BaoKai Wang, Arun Bansil, Fangcheng Chou, Pavel P. Shibayev, Hsin Lin, Shuang Jia, and M. Zahid Hasan, “Discovery of a weyl fermion semimetal and topological fermi arcs,” Science 349, 613–617 (2015), https://www.science.org/doi/pdf/10.1126/science.aaa9297 .
- D. T. Son and B. Z. Spivak, “Chiral Anomaly and Classical Negative Magnetoresistance of Weyl Metals,” Phys. Rev. B 88, 104412 (2013), arXiv:1206.1627 [cond-mat.mes-hall] .
- A. A. Burkov, “Chiral anomaly and transport in Weyl metals,” J. Phys. Condens. Matter 27, 113201 (2015), arXiv:1502.07609 [cond-mat.mes-hall] .
- Fei-Ye Li, Xi Luo, Xi Dai, Yue Yu, Fan Zhang, and Gang Chen, “Hybrid weyl semimetal,” Phys. Rev. B 94, 121105 (2016).
- Francesco M. D. Pellegrino, Mikhail I. Katsnelson, and Marco Polini, “Helicons in weyl semimetals,” Phys. Rev. B 92, 201407 (2015).
- Philip J. W. Moll et al., “Magnetic torque anomaly in the quantum limit of weyl semimetals,” Nature Communications 7, 12492 (2016).
- E. V. Gorbar, V. A. Miransky, I. A. Shovkovy, and P. O. Sukhachov, “Nonlocal transport in weyl semimetals in the hydrodynamic regime,” Phys. Rev. B 98, 035121 (2018).
- K. A. Madsen, P. W. Brouwer, and M. Breitkreiz, “Equilibrium current in a weyl semimetal–superconductor heterostructure,” Phys. Rev. B 104, 035109 (2021).
- Aritra Lahiri and Soumya Bera, “Dynamical quantum phase transitions in weyl semimetals,” Phys. Rev. B 99, 174311 (2019).
- Jing-Rong Wang, Guo-Zhu Liu, and Chang-Jin Zhang, “Topological quantum critical point in a triple-weyl semimetal: Non-fermi-liquid behavior and instabilities,” Phys. Rev. B 99, 195119 (2019).
- J. H. Pixley, David A. Huse, and S. Das Sarma, “Rare-region-induced avoided quantum criticality in disordered three-dimensional dirac and weyl semimetals,” Phys. Rev. X 6, 021042 (2016).
- Xin Li, Jing-Rong Wang, and Guo-Zhu Liu, “Phase transition with trivial quantum criticality in an anisotropic weyl semimetal,” Phys. Rev. B 97, 184508 (2018).
- Michael V Berry, “Quantal phase factors accompanying adiabatic changes,” Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences 392, 45–57 (1984).
- Di Xiao, Ming-Che Chang, and Qian Niu, “Berry phase effects on electronic properties,” Reviews of Modern Physics 82, 1959 (2010).
- N. P. Armitage, E. J. Mele, and A. Vishwanath, “Weyl and Dirac semimetals in three-dimensional solids,” Rev. Mod. Phys. 90, 015001 (2018b), arXiv:1705.01111 [cond-mat.mes-hall] .
- J. Maldacena, “The large n limit of superconformal field theories and supergravity,” Int. J. Theor. Phys. 38, 1113–1133 (1999).
- E. Witten, “Anti-de sitter space and holography,” Adv. Theor. Math. Phys. 2, 253–291 (1998).
- S. S. Gubser, I. R. Klebanov, and A. M. Polyakov, “Gauge theory correlators from non-critical string theory,” Phys. Lett. B 428, 105–114 (1998).
- Sean A. Hartnoll, “Lectures on holographic methods for condensed matter physics,” Class. Quant. Grav. 26, 224002 (2009), arXiv:0903.3246 [hep-th] .
- Christopher P. Herzog, “Lectures on Holographic Superfluidity and Superconductivity,” J. Phys. A 42, 343001 (2009), arXiv:0904.1975 [hep-th] .
- Karl Landsteiner, Yan Liu, and Ya-Wen Sun, “Quantum phase transition between a topological and a trivial semimetal from holography,” Phys. Rev. Lett. 116, 081602 (2016), arXiv:1511.05505 [hep-th] .
- Karl Landsteiner and Yan Liu, “The holographic Weyl semi-metal,” Phys. Lett. B 753, 453–457 (2016), arXiv:1505.04772 [hep-th] .
- Christian Copetti, Karl Landsteiner, and Mariano Fernandez, “Axial Hall effect and universality of holographic Weyl semi-metals,” JHEP 02, 138 (2017), arXiv:1611.08125 [hep-th] .
- Gianluca Grignani, Andrea Marini, Francisco Peña-Benitez, and Stefano Speziali, “AC conductivity for a holographic Weyl Semimetal,” JHEP 03, 125 (2017), arXiv:1612.00486 [cond-mat.str-el] .
- Xuanting Ji, Yan Liu, Ya-Wen Sun, and Yun-Long Zhang, “A Weyl-Z2 semimetal from holography,” JHEP 12, 066 (2021), arXiv:2109.05993 [hep-th] .
- Umut Gursoy, Vivian Jacobs, Erik Plauschinn, Henk Stoof, and Stefan Vandoren, “Holographic models for undoped Weyl semimetals,” JHEP 04, 127 (2013), arXiv:1209.2593 [hep-th] .
- Kazem Bitaghsir Fadafan, Andy O’Bannon, Ronnie Rodgers, and Matthew Russell, “A Weyl semimetal from AdS/CFT with flavour,” JHEP 04, 162 (2021), arXiv:2012.11434 [hep-th] .
- Nathan Seiberg and Edward Witten, “String theory and noncommutative geometry,” JHEP 09, 032 (1999), arXiv:hep-th/9908142 .
- Keun-Young Kim, Jonathan P. Shock, and Javier Tarrio, “The open string membrane paradigm with external electromagnetic fields,” JHEP 06, 017 (2011), arXiv:1103.4581 [hep-th] .
- Andreas Karch and Andy O’Bannon, “Metallic AdS/CFT,” JHEP 09, 024 (2007), arXiv:0705.3870 [hep-th] .
- Shin Nakamura, “Negative Differential Resistivity from Holography,” Prog. Theor. Phys. 124, 1105–1114 (2010), arXiv:1006.4105 [hep-th] .
- Shin Nakamura, “Nonequilibrium Phase Transitions and Nonequilibrium Critical Point from AdS/CFT,” Phys. Rev. Lett. 109, 120602 (2012), arXiv:1204.1971 [hep-th] .
- Mohammad Ali-Akbari and Ali Vahedi, “Non-equilibrium Phase Transition from AdS/CFT,” Nucl. Phys. B 877, 95–106 (2013), arXiv:1305.3713 [hep-th] .
- Masataka Matsumoto and Shin Nakamura, “Critical Exponents of Nonequilibrium Phase Transitions in AdS/CFT Correspondence,” Phys. Rev. D 98, 106027 (2018), arXiv:1804.10124 [hep-th] .
- Arnab Kundu and Sandipan Kundu, “Steady-state Physics, Effective Temperature Dynamics in Holography,” Phys. Rev. D 91, 046004 (2015), arXiv:1307.6607 [hep-th] .
- Arnab Kundu, “Steady States, Thermal Physics, and Holography,” Adv. High Energy Phys. 2019, 2635917 (2019).
- Andreas Karch, Andy O’Bannon, and Kostas Skenderis, “Holographic renormalization of probe D-branes in AdS/CFT,” JHEP 04, 015 (2006), arXiv:hep-th/0512125 .
- Kristan Jensen, Andreas Karch, and Ethan G. Thompson, “A Holographic Quantum Critical Point at Finite Magnetic Field and Finite Density,” JHEP 05, 015 (2010), arXiv:1002.2447 [hep-th] .
- B. Q. Lv, H. M. Weng, B. B. Fu, X. P. Wang, H. Miao, J. Ma, P. Richard, X. C. Huang, L. X. Zhao, G. F. Chen, Z. Fang, X. Dai, T. Qian, and H. Ding, “Experimental discovery of weyl semimetal taas,” Phys. Rev. X 5, 031013 (2015b).
- Cheng Guo, Viktar S. Asadchy, Bo Zhao, and Shanhui Fan, “Light control with Weyl semimetals,” (2022), arXiv:2209.00701 [physics.optics] .
- Huichao Wang and Jian Wang, “Electron transport in Dirac and Weyl semimetals,” (2018), arXiv:1809.03282 .
- Tobias Holder, Chia-Wei Huang, and Pavel M. Ostrovsky, “Electronic properties of disordered weyl semimetals at charge neutrality,” Phys. Rev. B 96, 174205 (2017).
- Shuta Ishigaki, Shunichiro Kinoshita, and Masataka Matsumoto, “Dynamical stability and filamentary instability in holographic conductors,” JHEP 04, 173 (2022), arXiv:2112.11677 [hep-th] .
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.