Absolute zeta functions and periodicity of quantum walks on cycles (2405.05995v1)
Abstract: The quantum walk is a quantum counterpart of the classical random walk. On the other hand, absolute zeta functions can be considered as zeta functions over $\mathbb{F}_1$. This study presents a connection between quantum walks and absolute zeta functions. In this paper, we focus on Hadamard walks and $3$-state Grover walks on cycle graphs. The Hadamard walks and the Grover walks are typical models of the quantum walks. We consider the periods and zeta functions of such quantum walks. Moreover, we derive the explicit forms of the absolute zeta functions of corresponding zeta functions. Also, it is shown that our zeta functions of quantum walks are absolute automorphic forms.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.