Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 187 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Stability of slow Hamiltonian dynamics from Lieb-Robinson bounds (2405.05958v3)

Published 9 May 2024 in quant-ph, cond-mat.mes-hall, cond-mat.str-el, math-ph, and math.MP

Abstract: We rigorously show that a local spin system giving rise to a slow Hamiltonian dynamics is stable against generic, even time-dependent, local perturbations. The sum of these perturbations can cover a significant amount of the system's size. The stability of the slow dynamics follows from proving that the Lieb-Robinson bound for the dynamics of the total Hamiltonian is the sum of two contributions: the Lieb-Robinson bound of the unperturbed dynamics and an additional term coming from the Lieb-Robinson bound of the perturbations with respect to the unperturbed Hamiltonian. Our results are particularly relevant in the context of the study of the stability of Many-Body-Localized systems, implying that if a so called ergodic region is present in the system, to spread across a certain distance it takes a time proportional to the exponential of such distance. The non-perturbative nature of our result allows us to develop a dual description of the dynamics of a system. As a consequence we are able to prove that the presence of a region of disorder in a ergodic system implies the slowing down of the dynamics in the vicinity of that region.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (38)
  1. E. H. Lieb and D. Robinson, The finite group velocity of quantum spin systems, Commun. Math. Phys. 28, 251 (1972).
  2. M. B. Hastings, Lieb-schultz-mattis in higher dimensions, Phys. Rev. B 69, 104431 (2004), arXiv:cond-mat/0305505 [cond-mat.str-el] .
  3. M. B. Hastings and S. Michalakis, Quantization of hall conductance for interacting electrons on a torus, Communications in Mathematical Physics 334, 10.1007/s00220-014-2167-x (2014), arXiv:1306.1258 [quant-ph] .
  4. S. Bravyi, M. B. Hastings, and F. Verstraete, Lieb-robinson bounds and the generation of correlations and topological quantum order, Phys. Rev. Lett. 97, 050401 (2006), arXiv:quant-ph/0603121 .
  5. T. J. Osborne, Simulating adiabatic evolution of gapped spin systems, Phys. Rev. A 75, 032321 (2007), arXiv:quant-ph/0601019 .
  6. Z. Gong and R. Hamazaki, Bounds in nonequilibrium quantum dynamics, International Journal of Modern Physics B 36, 10.1142/s0217979222300079 (2022), arXiv:2202.02011 [quant-ph] .
  7. C.-F. (Anthony) Chen, A. Lucas, and C. Yin, Speed limits and locality in many-body quantum dynamics, Reports on Progress in Physics 86, 116001 (2023), arXiv:2303.07386 [quant-ph] .
  8. D. Basko, I. Aleiner, and B. Altshuler, Metal–insulator transition in a weakly interacting many-electron system with localized single-particle states, Annals of Physics 321, 1126–1205 (2006), arXiv:cond-mat/0506617 [math-ph] .
  9. I. V. Gornyi, A. D. Mirlin, and D. G. Polyakov, Interacting electrons in disordered wires: Anderson localization and low-t𝑡titalic_t transport, Phys. Rev. Lett. 95, 206603 (2005), arXiv:cond-mat/0506411 [math-ph] .
  10. V. Oganesyan and D. A. Huse, Localization of interacting fermions at high temperature, Phys. Rev. B 75, 155111 (2007), arXiv:cond-mat/0610854 [cond-mat.str-el] .
  11. M. Zˇˇ𝑍\check{Z}overroman_ˇ start_ARG italic_Z end_ARGnidaricˇˇ𝑐\check{c}overroman_ˇ start_ARG italic_c end_ARG, T. Prosen, and P. Prelovsˇˇ𝑠\check{s}overroman_ˇ start_ARG italic_s end_ARGek, Many-body localization in the heisenberg x⁢x⁢z𝑥𝑥𝑧xxzitalic_x italic_x italic_z magnet in a random field, Phys. Rev. B 77, 064426 (2008), arXiv:0706.2539 [quant-ph] .
  12. W. De Roeck and F. Huveneers, Stability and instability towards delocalization in many-body localization systems, Phys. Rev. B 95, 155129 (2017), arXiv:1608.01815 [cond-mat.dis-nn] .
  13. D. J. Luitz, F. Huveneers, and W. De Roeck, How a small quantum bath can thermalize long localized chains, Physical Review Letters 119, 10.1103/physrevlett.119.150602 (2017), arXiv:1705.10807 [cond-mat.str-el] .
  14. I. H. Kim, A. Chandran, and D. A. Abanin, Local integrals of motion and the logarithmic lightcone in many-body localized systems (2014), arXiv:1412.3073 [cond-mat.dis-nn] .
  15. B. Nachtergaele and J. Reschke, Slow propagation in some disordered quantum spin chains, Journal of Statistical Physics 182, 10.1007/s10955-020-02681-2 (2021), arXiv:1906.10167 [math-ph] .
  16. A. Elgart and A. Klein, Slow propagation of information on the random xxz quantum spin chain (2023), arXiv:2311.14188 [math-ph] .
  17. E. Hamza, R. Sims, and G. Stolz, Dynamical localization in disordered quantum spin systems, Commun. Math. Phys. 315, 215 (2012), arXiv:1108.3811 [math-ph] .
  18. G. Stolz, An introduction to the mathematics of anderson localization, Contemp Math 552, 71 (2011), arXiv:1104.2317 [math-ph] .
  19. W. De Roeck, F. Huveneers, and S. Olla, Subdiffusion in one-dimensional hamiltonian chains with sparse interactions, Journal of Statistical Physics 180, 678–698 (2020), arXiv:1909.07322v2 [math-ph] .
  20. Y. Huang, Adding boundary terms to anderson localized hamiltonians leads to unbounded growth of entanglement, Europhysics Letters 142, 10001 (2023), arXiv:2109.07640 [cond-mat.dis-nn] .
  21. T. B. Wahl, A. Pal, and S. H. Simon, Signatures of the many-body localized regime in two dimensions, Nature Physics 15, 164–169 (2018), arXiv:1711.02678 [cond-mat.dis-nn] .
  22. M. Gebert, A. Moon, and B. Nachtergaele, A lieb–robinson bound for quantum spin chains with strong on-site impurities, Reviews in Mathematical Physics 34, 10.1142/s0129055x22500076 (2022), arXiv:arXiv:2104.00968v1 [math-ph] .
  23. H. Ha, A. Morningstar, and D. A. Huse, Many-body resonances in the avalanche instability of many-body localization, Physical Review Letters 130, 10.1103/physrevlett.130.250405 (2023), arXiv:2301.04658 [cond-mat.stat-mech] .
  24. M. Goihl, J. Eisert, and C. Krumnow, Exploration of the stability of many-body localized systems in the presence of a small bath, Phys. Rev. B 99, 195145 (2019).
  25. I.-D. Potirniche, S. Banerjee, and E. Altman, Exploration of the stability of many-body localization in d larger than 1, Phys. Rev. B 99, 205149 (2019), arXiv:1805.01475 [cond-mat.dis-nn] .
  26. L. Pastur and V. Slavin, Area law scaling for the entropy of disordered quasifree fermions, Physical Review Letters 113, 10.1103/physrevlett.113.150404 (2014), arXiv:1408.2570 [quant-ph] .
  27. H. Abdul-Rahman and G. Stolz, A uniform area law for the entanglement of eigenstates in the disordered xy chain, Journal of Mathematical Physics 56, 10.1063/1.4938573 (2015), arXiv:1505.02117 [math-ph] .
  28. J. H. Bardarson, F. Pollmann, and J. E. Moore, Unbounded growth of entanglement in models of many-body localization, Physical Review Letters 109, 10.1103/physrevlett.109.017202 (2012), arXiv:1202.5532 [cond-mat.str-el] .
  29. M. Serbyn, Z. Papić, and D. A. Abanin, Universal slow growth of entanglement in interacting strongly disordered systems, Physical Review Letters 110, 10.1103/physrevlett.110.260601 (2013), arXiv:1304.4605 [cond-mat.str-el] .
  30. A. Nico-Katz, A. Bayat, and S. Bose, Information-theoretic memory scaling in the many-body localization transition, Physical Review B 105, 10.1103/physrevb.105.205133 (2022), arXiv:2009.04470 [quant-ph] .
  31. D. Damanik and S. Tcheremchantsev, Quantum dynamics via complex analysis methods: General upper bounds without time-averaging and tight lower bounds for the strongly coupled fibonacci hamiltonian, Journal of Functional Analysis 255, 2872 (2008), arXiv:0801.3399 [math.SP] .
  32. H. Kim and D. A. Huse, Ballistic spreading of entanglement in a diffusive nonintegrable system, Physical Review Letters 111, 10.1103/physrevlett.111.127205 (2013), arXiv:1306.4306 [quant-ph] .
  33. T. Rakovszky, F. Pollmann, and C. von Keyserlingk, Diffusive hydrodynamics of out-of-time-ordered correlators with charge conservation, Physical Review X 8, 10.1103/physrevx.8.031058 (2018), arXiv:1710.09827 [cond-mat.stat-mech] .
  34. T. Prosen, Open x⁢x⁢z𝑥𝑥𝑧xxzitalic_x italic_x italic_z spin chain: Nonequilibrium steady state and a strict bound on ballistic transport, Phys. Rev. Lett. 106, 217206 (2011), arXiv:1103.1350 [cond-mat.str-el] .
  35. V. Khemani, R. Nandkishore, and S. L. Sondhi, Nonlocal adiabatic response of a localized system to local manipulations, Nature Physics 11, 560–565 (2015), arXiv:1411.2616 [cond-mat.dis-nn] .
  36. L. Masanes, Area law for the entropy of low-energy states, Physical Review A 80, 10.1103/physreva.80.052104 (2009), arXiv:0907.4672 [quant-ph] .
  37. T. Kuwahara and K. Saito, Strictly linear light cones in long-range interacting systems of arbitrary dimensions, Phys. Rev. X 10, 031010 (2020), arXiv:1910.14477 [quanth-ph] .
  38. M. B. Hastings, Locality in quantum systems (2010), arXiv:1008.5137 [maph-ph] .
Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: