Stability of slow Hamiltonian dynamics from Lieb-Robinson bounds (2405.05958v3)
Abstract: We rigorously show that a local spin system giving rise to a slow Hamiltonian dynamics is stable against generic, even time-dependent, local perturbations. The sum of these perturbations can cover a significant amount of the system's size. The stability of the slow dynamics follows from proving that the Lieb-Robinson bound for the dynamics of the total Hamiltonian is the sum of two contributions: the Lieb-Robinson bound of the unperturbed dynamics and an additional term coming from the Lieb-Robinson bound of the perturbations with respect to the unperturbed Hamiltonian. Our results are particularly relevant in the context of the study of the stability of Many-Body-Localized systems, implying that if a so called ergodic region is present in the system, to spread across a certain distance it takes a time proportional to the exponential of such distance. The non-perturbative nature of our result allows us to develop a dual description of the dynamics of a system. As a consequence we are able to prove that the presence of a region of disorder in a ergodic system implies the slowing down of the dynamics in the vicinity of that region.
- E. H. Lieb and D. Robinson, The finite group velocity of quantum spin systems, Commun. Math. Phys. 28, 251 (1972).
- M. B. Hastings, Lieb-schultz-mattis in higher dimensions, Phys. Rev. B 69, 104431 (2004), arXiv:cond-mat/0305505 [cond-mat.str-el] .
- M. B. Hastings and S. Michalakis, Quantization of hall conductance for interacting electrons on a torus, Communications in Mathematical Physics 334, 10.1007/s00220-014-2167-x (2014), arXiv:1306.1258 [quant-ph] .
- S. Bravyi, M. B. Hastings, and F. Verstraete, Lieb-robinson bounds and the generation of correlations and topological quantum order, Phys. Rev. Lett. 97, 050401 (2006), arXiv:quant-ph/0603121 .
- T. J. Osborne, Simulating adiabatic evolution of gapped spin systems, Phys. Rev. A 75, 032321 (2007), arXiv:quant-ph/0601019 .
- Z. Gong and R. Hamazaki, Bounds in nonequilibrium quantum dynamics, International Journal of Modern Physics B 36, 10.1142/s0217979222300079 (2022), arXiv:2202.02011 [quant-ph] .
- C.-F. (Anthony) Chen, A. Lucas, and C. Yin, Speed limits and locality in many-body quantum dynamics, Reports on Progress in Physics 86, 116001 (2023), arXiv:2303.07386 [quant-ph] .
- D. Basko, I. Aleiner, and B. Altshuler, Metal–insulator transition in a weakly interacting many-electron system with localized single-particle states, Annals of Physics 321, 1126–1205 (2006), arXiv:cond-mat/0506617 [math-ph] .
- I. V. Gornyi, A. D. Mirlin, and D. G. Polyakov, Interacting electrons in disordered wires: Anderson localization and low-t𝑡titalic_t transport, Phys. Rev. Lett. 95, 206603 (2005), arXiv:cond-mat/0506411 [math-ph] .
- V. Oganesyan and D. A. Huse, Localization of interacting fermions at high temperature, Phys. Rev. B 75, 155111 (2007), arXiv:cond-mat/0610854 [cond-mat.str-el] .
- M. Zˇˇ𝑍\check{Z}overroman_ˇ start_ARG italic_Z end_ARGnidaricˇˇ𝑐\check{c}overroman_ˇ start_ARG italic_c end_ARG, T. Prosen, and P. Prelovsˇˇ𝑠\check{s}overroman_ˇ start_ARG italic_s end_ARGek, Many-body localization in the heisenberg xxz𝑥𝑥𝑧xxzitalic_x italic_x italic_z magnet in a random field, Phys. Rev. B 77, 064426 (2008), arXiv:0706.2539 [quant-ph] .
- W. De Roeck and F. Huveneers, Stability and instability towards delocalization in many-body localization systems, Phys. Rev. B 95, 155129 (2017), arXiv:1608.01815 [cond-mat.dis-nn] .
- D. J. Luitz, F. Huveneers, and W. De Roeck, How a small quantum bath can thermalize long localized chains, Physical Review Letters 119, 10.1103/physrevlett.119.150602 (2017), arXiv:1705.10807 [cond-mat.str-el] .
- I. H. Kim, A. Chandran, and D. A. Abanin, Local integrals of motion and the logarithmic lightcone in many-body localized systems (2014), arXiv:1412.3073 [cond-mat.dis-nn] .
- B. Nachtergaele and J. Reschke, Slow propagation in some disordered quantum spin chains, Journal of Statistical Physics 182, 10.1007/s10955-020-02681-2 (2021), arXiv:1906.10167 [math-ph] .
- A. Elgart and A. Klein, Slow propagation of information on the random xxz quantum spin chain (2023), arXiv:2311.14188 [math-ph] .
- E. Hamza, R. Sims, and G. Stolz, Dynamical localization in disordered quantum spin systems, Commun. Math. Phys. 315, 215 (2012), arXiv:1108.3811 [math-ph] .
- G. Stolz, An introduction to the mathematics of anderson localization, Contemp Math 552, 71 (2011), arXiv:1104.2317 [math-ph] .
- W. De Roeck, F. Huveneers, and S. Olla, Subdiffusion in one-dimensional hamiltonian chains with sparse interactions, Journal of Statistical Physics 180, 678–698 (2020), arXiv:1909.07322v2 [math-ph] .
- Y. Huang, Adding boundary terms to anderson localized hamiltonians leads to unbounded growth of entanglement, Europhysics Letters 142, 10001 (2023), arXiv:2109.07640 [cond-mat.dis-nn] .
- T. B. Wahl, A. Pal, and S. H. Simon, Signatures of the many-body localized regime in two dimensions, Nature Physics 15, 164–169 (2018), arXiv:1711.02678 [cond-mat.dis-nn] .
- M. Gebert, A. Moon, and B. Nachtergaele, A lieb–robinson bound for quantum spin chains with strong on-site impurities, Reviews in Mathematical Physics 34, 10.1142/s0129055x22500076 (2022), arXiv:arXiv:2104.00968v1 [math-ph] .
- H. Ha, A. Morningstar, and D. A. Huse, Many-body resonances in the avalanche instability of many-body localization, Physical Review Letters 130, 10.1103/physrevlett.130.250405 (2023), arXiv:2301.04658 [cond-mat.stat-mech] .
- M. Goihl, J. Eisert, and C. Krumnow, Exploration of the stability of many-body localized systems in the presence of a small bath, Phys. Rev. B 99, 195145 (2019).
- I.-D. Potirniche, S. Banerjee, and E. Altman, Exploration of the stability of many-body localization in d larger than 1, Phys. Rev. B 99, 205149 (2019), arXiv:1805.01475 [cond-mat.dis-nn] .
- L. Pastur and V. Slavin, Area law scaling for the entropy of disordered quasifree fermions, Physical Review Letters 113, 10.1103/physrevlett.113.150404 (2014), arXiv:1408.2570 [quant-ph] .
- H. Abdul-Rahman and G. Stolz, A uniform area law for the entanglement of eigenstates in the disordered xy chain, Journal of Mathematical Physics 56, 10.1063/1.4938573 (2015), arXiv:1505.02117 [math-ph] .
- J. H. Bardarson, F. Pollmann, and J. E. Moore, Unbounded growth of entanglement in models of many-body localization, Physical Review Letters 109, 10.1103/physrevlett.109.017202 (2012), arXiv:1202.5532 [cond-mat.str-el] .
- M. Serbyn, Z. Papić, and D. A. Abanin, Universal slow growth of entanglement in interacting strongly disordered systems, Physical Review Letters 110, 10.1103/physrevlett.110.260601 (2013), arXiv:1304.4605 [cond-mat.str-el] .
- A. Nico-Katz, A. Bayat, and S. Bose, Information-theoretic memory scaling in the many-body localization transition, Physical Review B 105, 10.1103/physrevb.105.205133 (2022), arXiv:2009.04470 [quant-ph] .
- D. Damanik and S. Tcheremchantsev, Quantum dynamics via complex analysis methods: General upper bounds without time-averaging and tight lower bounds for the strongly coupled fibonacci hamiltonian, Journal of Functional Analysis 255, 2872 (2008), arXiv:0801.3399 [math.SP] .
- H. Kim and D. A. Huse, Ballistic spreading of entanglement in a diffusive nonintegrable system, Physical Review Letters 111, 10.1103/physrevlett.111.127205 (2013), arXiv:1306.4306 [quant-ph] .
- T. Rakovszky, F. Pollmann, and C. von Keyserlingk, Diffusive hydrodynamics of out-of-time-ordered correlators with charge conservation, Physical Review X 8, 10.1103/physrevx.8.031058 (2018), arXiv:1710.09827 [cond-mat.stat-mech] .
- T. Prosen, Open xxz𝑥𝑥𝑧xxzitalic_x italic_x italic_z spin chain: Nonequilibrium steady state and a strict bound on ballistic transport, Phys. Rev. Lett. 106, 217206 (2011), arXiv:1103.1350 [cond-mat.str-el] .
- V. Khemani, R. Nandkishore, and S. L. Sondhi, Nonlocal adiabatic response of a localized system to local manipulations, Nature Physics 11, 560–565 (2015), arXiv:1411.2616 [cond-mat.dis-nn] .
- L. Masanes, Area law for the entropy of low-energy states, Physical Review A 80, 10.1103/physreva.80.052104 (2009), arXiv:0907.4672 [quant-ph] .
- T. Kuwahara and K. Saito, Strictly linear light cones in long-range interacting systems of arbitrary dimensions, Phys. Rev. X 10, 031010 (2020), arXiv:1910.14477 [quanth-ph] .
- M. B. Hastings, Locality in quantum systems (2010), arXiv:1008.5137 [maph-ph] .
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.