Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Calculation of $6j$-symbols for the Lie algebra $\mathfrak{gl}_n$ (2405.05628v3)

Published 9 May 2024 in math.RT, math-ph, math.CV, and math.MP

Abstract: An explicit description of the multiplicity space that describes occurrences of irreducible representations in a splitting of a tensor product of two irreducible representations of $\mathfrak{gl}_n$ is given. Using this description an explicit formula for an arbitrary $6j$-symbol for the algebra $\mathfrak{gl}_n$ is derived. The $6j$-symbol is expressed through a value of a generalized hypergeometric function.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (16)
  1. A. N. Kirillov, N. Yu. Reshetikhin, โ€œRepresentation of Yangians and multiplicities of occurrence of irreducible components of the tensor product of simple algebrasโ€, Analytical theory of numbers and theory of functions. Part 8, Zap. Nauchn. Sem. LOMI, 160, "Nauka", Leningrad. Otdel., Leningrad, 1987, 211โ€“221
  2. D. V. Artamonov, โ€œFormulas for calculating the 3โขj3๐‘—3j3 italic_j -symbols of the representations of the Lie algebra gโขl3๐‘”subscript๐‘™3gl_{3}italic_g italic_l start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT for the Gelfandโ€“Tsetlin basesโ€, Sibirsk. Mat. Zh., 63:4 (2022), 717โ€“735 mathnet mathscinet; Siberian Math. J., 63:4 (2022), 595โ€“610
  3. D. V. Artamonov, โ€œClassical 6โขj6๐‘—6j6 italic_j -symbols of finite-dimensional representations of the algebra gโขl3๐‘”subscript๐‘™3gl_{3}italic_g italic_l start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT โ€, TMF, 216:1 (2023), 3โ€“19 mathnet mathscinet; Theoret. and Math. Phys., 216:1 (2023), 909โ€“923
  4. D. V. Artamonov, โ€œThe Clebshโ€“Gordan coefficients for the algebra gโขl3๐‘”subscript๐‘™3gl_{3}italic_g italic_l start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT and hypergeometric functionsโ€, Algebra i Analiz, 33:1 (2021), 1โ€“29 mathnet; St. Petersburg Math. J., 33:1 (2022), 1โ€“22
  5. K. Hecht. A simple class of Uโข(N)๐‘ˆ๐‘U(N)italic_U ( italic_N ) Racah coefficients and their application. Communications in Mathematical Physics. 1975. v. 41, N๐‘Nitalic_N 2. p. 135โ€“156.
  6. R. Gustafson. A Whippleโ€™s Transformation for Hypergeometric Series in Uโข(N)๐‘ˆ๐‘U(N)italic_U ( italic_N ) and Multivariable Hypergeometric Orthogonal Polynomials. SIAM journal on mathematical analysis. 1987. v. 18, N๐‘Nitalic_N2 . p. 495โ€“530.
  7. M. Wong. On the multiplicity-free Wigner and Racah coefficients of Uโข(n)๐‘ˆ๐‘›U(n)italic_U ( italic_n ). Journal of Mathematical Physics. 1979. v. 20, N๐‘Nitalic_N 12. p. 2391โ€“2397.
  8. King R. C. Branching rules for classical Lie groups using tensor and spinor methods //Journal of Physics A: Mathematical and General. โ€“ 1975. โ€“ ะข. 8. โ€“ N 4. โ€“ ะก. 429.
  9. S. Alisauskas. Integrals involving triplets of Jacobi and Gegenbauer polynomials and some 3โขj3๐‘—3j3 italic_j-symbols of SโขOโข(n)๐‘†๐‘‚๐‘›SO(n)italic_S italic_O ( italic_n ), SโขUโข(n)๐‘†๐‘ˆ๐‘›SU(n)italic_S italic_U ( italic_n ) and Sโขpโข(4)๐‘†๐‘4Sp(4)italic_S italic_p ( 4 ) //arXiv preprint math-ph/0509035. โ€“ 2005.
  10. A. U. Klimyk. Infinitesimal operators for representations of complex Lie groups and Clebsch-Gordan coefficients for compact groups //Journal of Physics A: Mathematical and General. โ€“ 1982. โ€“ ะข. 15. โ€“ N 10. โ€“ ะก. 3009.
  11. S. Alisauskas. 6โขj6๐‘—6j6 italic_j-symbols for symmetric representations of SโขOโข(n)๐‘†๐‘‚๐‘›SO(n)italic_S italic_O ( italic_n ) as the double series //Journal of Physics A: Mathematical and General. โ€“ 2002. โ€“ ะข. 35. โ€“ โ„–. 48. โ€“ ะก. 10229.
  12. S. Alisauskas. Some coupling and recoupling coefficients for symmetric representations of SโขOn๐‘†subscript๐‘‚๐‘›SO_{n}italic_S italic_O start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT //Journal of Physics A: Mathematical and General. โ€“ 1987. โ€“ ะข. 20. โ€“ N 1. โ€“ ะก. 35.
  13. S. Alisauskas. Coupling coefficients of SโขOโข(n)๐‘†๐‘‚๐‘›SO(n)italic_S italic_O ( italic_n ) and integrals over triplets of Jacobi and Gegenbauer polynomials //arXiv preprint math-ph/0201048. โ€“ 2002.
  14. G. Junker. Explicit evaluation of coupling coefficients for the most degenerate representations of SโขOโข(n)๐‘†๐‘‚๐‘›SO(n)italic_S italic_O ( italic_n ) //Journal of Physics A: Mathematical and General. โ€“ 1993. โ€“ ะข. 26. โ€“ N 7. โ€“ ะก. 1649.
  15. M. Hormess , G. Junker. More on coupling coefficients for the most degenerate representations of SโขOโข(n)๐‘†๐‘‚๐‘›SO(n)italic_S italic_O ( italic_n ) //Journal of Physics A: Mathematical and General. โ€“ 1999. โ€“ ะข. 32. โ€“ N 23. โ€“ ะก. 4249.
  16. P. Cvitanovic, A. D. Kennedy. Spinors in negative dimensions //Physica Scripta. โ€“ 1982. โ€“ ะข. 26. โ€“ N 1. โ€“ ะก. 5.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube