Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 131 tok/s Pro
Kimi K2 168 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Quasielastic Lepton-Nucleus Scattering and the Correlated Fermi Gas Model (2405.05342v2)

Published 8 May 2024 in hep-ph, hep-ex, nucl-ex, and nucl-th

Abstract: The neutrino research program in the coming decades will require improved precision. A major source of uncertainty is the interaction of neutrinos with nuclei that serve as targets for such experiments. Broadly speaking, this interaction often depends, e.g., for charge-current quasi-elastic scattering, on the combination of nucleon physics", expressed by form factors, andnuclear physics", expressed by a nuclear model. It is important to get a good handle on both. We present a fully analytic implementation of the Correlated Fermi Gas Model for electron-nucleus and charge-current quasi-elastic neutrino-nucleus scattering. The implementation is used to compare separately form factors and nuclear model effects for both electron-carbon and neutrino-carbon scattering data.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (46)
  1. A New parameterization of the nucleon elastic form-factors. Nucl. Phys. B Proc. Suppl., 159:127–132, 2006, hep-ex/0602017.
  2. Parametrization and applications of the low-Q2superscript𝑄2Q^{2}italic_Q start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT nucleon vector form factors. Phys. Rev. D, 102(7):074012, 2020, 2003.13640.
  3. Joanna Ewa Sobczyk. Intercomparison of lepton-nucleus scattering models in the quasielastic region. Phys. Rev. C, 96(4):045501, 2017, 1706.06739.
  4. Joanna Ewa Sobczyk. Nuclear effects in neutrino-nucleus interactions: the role of spectral functions. PhD thesis, U. Valencia (main), 2019.
  5. Spectral function of finite nuclei and scattering of GeV electrons. Nucl. Phys. A, 579:493–517, 1994.
  6. Electroweak nuclear response in quasi-elastic regime. Phys. Rev. Lett., 105:132301, 2010, 1006.4783.
  7. Final state interactions in the response of nuclear matter. Phys. Rev. C, 67:014605, 2003, nucl-th/0201019.
  8. Improving the accuracy of neutrino energy reconstruction in charged-current quasielastic scattering off nuclear targets. Phys. Rev. D, 91(3):033005, 2015, 1404.5687.
  9. Many body approach to the inclusive (e, e-prime) reaction from the quasielastic to the Delta excitation region. Nucl. Phys. A, 627:543–598, 1997, nucl-th/9711009.
  10. Inclusive quasi-elastic neutrino reactions. Phys. Rev. C, 70:055503, 2004, nucl-th/0408005. [Erratum: Phys.Rev.C 72, 019902 (2005)].
  11. In medium dispersion relation effects in nuclear inclusive reactions at intermediate and low energies. Annals Phys., 383:455–496, 2017, 1701.03628.
  12. P. Fernandez de Cordoba and E. Oset. Semiphenomenological approach to nucleon properties in nuclear matter. Phys. Rev. C, 46:1697–1709, 1992.
  13. Transport-theoretical Description of Nuclear Reactions. Phys. Rept., 512:1–124, 2012, 1106.1344.
  14. Neutrino-Induced Reactions on Nuclei. Phys. Rev. C, 94(3):035502, 2016, 1605.09391.
  15. A. A. Aguilar-Arevalo et al. First Measurement of the Muon Neutrino Charged Current Quasielastic Double Differential Cross Section. Phys. Rev. D, 81:092005, 2010, 1002.2680.
  16. Model independent determination of the axial mass parameter in quasielastic neutrino-nucleon scattering. Phys. Rev. D, 84:073006, 2011, 1108.0423.
  17. Model-independent determination of the axial mass parameter in quasielastic antineutrino-nucleon scattering. Phys. Rev. D, 92(11):113011, 2015, 1510.05652.
  18. Nuclear Fermi momenta from quasielastic electron scattering. Phys. Rev. Lett., 26:445–448, 1971.
  19. K. S. Egiyan et al. Observation of nuclear scaling in the A(e, e-prime) reaction at x(B) greater than 1. Phys. Rev. C, 68:014313, 2003, nucl-ex/0301008.
  20. K. S. Egiyan et al. Measurement of 2- and 3-nucleon short range correlation probabilities in nuclei. Phys. Rev. Lett., 96:082501, 2006, nucl-ex/0508026.
  21. N. Fomin et al. New measurements of high-momentum nucleons and short-range structures in nuclei. Phys. Rev. Lett., 108:092502, 2012, 1107.3583.
  22. A. Tang et al. n-p short range correlations from (p, 2p + n) measurements. AIP Conf. Proc., 549(1):451–454, 2000, nucl-ex/0009009.
  23. Evidence for the strong dominance of proton-neutron correlations in nuclei. Phys. Rev. Lett., 97:162504, 2006, nucl-th/0604012.
  24. R. Shneor et al. Investigation of proton-proton short-range correlations via the C-12(e, e-prime pp) reaction. Phys. Rev. Lett., 99:072501, 2007, nucl-ex/0703023.
  25. R. Subedi et al. Probing Cold Dense Nuclear Matter. Science, 320:1476–1478, 2008, 0908.1514.
  26. I. Korover et al. Probing the Repulsive Core of the Nucleon-Nucleon Interaction via the H4⁢e⁢(e,e′⁢p⁢N)superscript𝐻4𝑒𝑒superscript𝑒′𝑝𝑁{}^{4}He(e,e^{\prime}pN)start_FLOATSUPERSCRIPT 4 end_FLOATSUPERSCRIPT italic_H italic_e ( italic_e , italic_e start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT italic_p italic_N ) Triple-Coincidence Reaction. Phys. Rev. Lett., 113(2):022501, 2014, 1401.6138.
  27. Symmetry Energy of Nucleonic Matter With Tensor Correlations. Phys. Rev. C, 91(2):025803, 2015, 1408.0772.
  28. Nuclear Equation of State and Single-nucleon Potential from Gogny-like Energy Density Functionals Encapsulating Effects of Nucleon-nucleon Short-range Correlations. 10 2022, 2210.10924.
  29. Realistic finite-temperature effects in neutron star merger simulations. Phys. Rev. D, 104(6):063016, 2021, 2104.07226.
  30. Finite-temperature extension for cold neutron star equations of state. Astrophys. J., 875(1):12, 2019, 1902.10735.
  31. Analysis of Neutron Stars Observations Using a Correlated Fermi Gas Model, 8 2016, 1608.00487.
  32. B. Schmookler et al. Modified structure of protons and neutrons in correlated pairs. Nature, 566(7744):354–358, 2019, 2004.12065.
  33. Luis Alvarez-Ruso et al. Recent highlights from GENIE v3. Eur. Phys. J. ST, 230(24):4449–4467, 2021, 2106.09381.
  34. Deuterium target data for precision neutrino-nucleus cross sections. Phys. Rev. D, 93(11):113015, 2016, 1603.03048.
  35. T. Cai et al. Measurement of the axial vector form factor from antineutrino–proton scattering. Nature, 614(7946):48–53, 2023.
  36. Nucleon axial structure from lattice QCD. JHEP, 05:126, 2020, 1911.13150.
  37. Precision nucleon charges and form factors using (2+1)-flavor lattice QCD. Phys. Rev. D, 105(5):054505, 2022, 2103.05599.
  38. Isovector axial form factor of the nucleon from lattice QCD. Phys. Rev. D, 106(7):074503, 2022, 2207.03440.
  39. Nucleon isovector axial form factors. Phys. Rev. D, 109(1):014503, 2024, 2305.11330.
  40. Nucleon axial and pseudoscalar form factors using twisted-mass fermion ensembles at the physical point. Phys. Rev. D, 109(3):034503, 2024, 2309.05774.
  41. An Archive for quasi-elastic electron-nucleus scattering data. 3 2006, nucl-ex/0603032.
  42. Quasielastic Electron Nucleus Scattering Archive. http://discovery.phys.virginia.edu/research/groups/qes-archive.
  43. R. L. Workman et al. Review of Particle Physics. PTEP, 2022:083C01, 2022.
  44. Vector and Axial Nucleon Form Factors:A Duality Constrained Parameterization. Eur. Phys. J. C, 53:349–354, 2008, 0708.1946.
  45. Confronting the axial-vector form factor from lattice QCD with MINERvA antineutrino-proton data. Phys. Rev. D, 108(7):074514, 2023, 2307.14920.
  46. Elastic electron-deuteron scattering and the electric neutron form factor at four-momentum transfers 5fm<−2q2<14{}^{-2}<q^{2}<14start_FLOATSUPERSCRIPT - 2 end_FLOATSUPERSCRIPT < italic_q start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT < 14fm-2. Nucl. Phys. B, 32:221–237, 1971.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 3 posts and received 1 like.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube