Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 152 tok/s Pro
GPT OSS 120B 325 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Nodal Spectral Functions Stabilized by Non-Hermitian Topology of Quasiparticles (2405.05322v1)

Published 8 May 2024 in cond-mat.mes-hall, cond-mat.str-el, and quant-ph

Abstract: In quantum materials, basic observables such as spectral functions and susceptibilities are determined by Green's functions and their complex quasiparticle spectrum rather than by bare electrons. Even in closed many-body systems, this makes a description in terms of effective non-Hermitian (NH) Bloch Hamiltonians natural and intuitive. Here, we discuss how the abundance and stability of nodal phases is drastically affected by NH topology. While previous work has mostly considered complex degeneracies known as exceptional points as the NH counterpart of nodal points, we propose to relax this assumption by only requiring a crossing of the real part of the complex quasiparticle spectra, which entails a band crossing in the spectral function, i.e. a nodal spectral function. Interestingly, such real crossings are topologically protected by the braiding properties of the complex Bloch bands, and thus generically occur already in one-dimensional systems without symmetry or fine-tuning. We propose and study a microscopic lattice model in which a sublattice-dependent interaction stabilizes nodal spectral functions. Besides the gapless spectrum, we identify non-reciprocal charge transport properties after a local potential quench as a key signature of non-trivial band braiding. Finally, in the limit of zero interaction on one of the sublattices, we find a perfectly ballistic unidirectional mode in a non-integrable environment, reminiscent of a chiral edge state known from quantum Hall phases. Our analysis is corroborated by numerical simulations both in the framework of exact diagonalization and within the conserving second Born approximation.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (41)
  1. E. P. Wigner, Characteristic vectors of bordered matrices with infinite dimensions, The Annals of Mathematics 62, 548 (1955).
  2. F. J. Dyson, Statistical theory of the energy levels of complex systems. i, Journal of Mathematical Physics 3, 140 (1962).
  3. T. O. Wehling, A. M. Black-Schaffer, and A. V. Balatsky, Dirac materials, Advances in Physics 63, 1 (2014).
  4. N. P. Armitage, E. J. Mele, and A. Vishwanath, Weyl and dirac semimetals in three-dimensional solids, Reviews of Modern Physics 90, 015001 (2018).
  5. M. Z. Hasan and C. L. Kane, Colloquium: Topological insulators, Reviews of Modern Physics 82, 3045 (2010).
  6. X. L. Qi and S. C. Zhang, Topological insulators and superconductors, Reviews of Modern Physics 83, 1057 (2011).
  7. Y. Ashida, Z. Gong, and M. Ueda, Non-hermitian physics, Advances in Physics 69, 249 (2020).
  8. S. Yao and Z. Wang, Edge states and topological invariants of non-hermitian systems, Physical Review Letters 121, 086803 (2018).
  9. H. Shen, B. Zhen, and L. Fu, Topological band theory for non-hermitian hamiltonians, Physical Review Letters 120, 146402 (2018).
  10. E. J. Bergholtz, J. C. Budich, and F. K. Kunst, Exceptional topology of non-hermitian systems, Reviews of Modern Physics 93 (2019).
  11. C. H. Lee and R. Thomale, Anatomy of skin modes and topology in non-hermitian systems, Physical Review B 99, 201103 (2019).
  12. Z. Li and R. S. Mong, Homotopical characterization of non-hermitian band structures, Physical Review B 103, 155129 (2021).
  13. W. B. Rui, Y. X. Zhao, and Z. D. Wang, Hermitian topologies originating from non-hermitian braidings, Phys. Rev. B 108, 165105 (2023).
  14. H. Hu and E. Zhao, Knots and non-hermitian bloch bands, Physical Review Letters 126, 010401 (2021).
  15. V. Kozii and L. Fu, Non-hermitian topological theory of finite-lifetime quasiparticles: Prediction of bulk fermi arc due to exceptional point,  arXiv:1708.05841 [cond-mat.mes-hall] .
  16. T. Yoshida, R. Peters, and N. Kawakami, Non-hermitian perspective of the band structure in heavy-fermion systems, Physical Review B 98, 035141 (2018).
  17. R. Rausch, R. Peters, and T. Yoshida, Exceptional points in the one-dimensional hubbard model, New Journal of Physics 23, 013011 (2021).
  18. Y. Michishita and R. Peters, Equivalence of effective non-hermitian hamiltonians in the context of open quantum systems and strongly correlated electron systems, Physical Review Letters 124, 196401 (2020).
  19. Y. Michishita, T. Yoshida, and R. Peters, Relationship between exceptional points and the kondo effect in f-electron materials, Physical Review B 101, 085122 (2020).
  20. L. Crippa, J. C. Budich, and G. Sangiovanni, Fourth-order exceptional points in correlated quantum many-body systems, Physical Review B 104, L121109 (2021).
  21. M. A. Miri and A. Alù, Exceptional points in optics and photonics, Science 363 (2019).
  22. M. V. Berry, Physics of nonhermitian degeneracies, Czechoslovak Journal of Physics 54, 1039 (2004).
  23. B. Michen, T. Micallo, and J. C. Budich, Exceptional non-hermitian phases in disordered quantum wires, Physical Review B 104, 035413 (2021).
  24. R. Okugawa and T. Yokoyama, Topological exceptional surfaces in non-hermitian systems with parity-time and parity-particle-hole symmetries, Physical Review B 99, 041202 (2019).
  25. G. Stefanucci and R. V. Leeuwen, Nonequilibrium many-body theory of quantum systems: A modern introduction, Vol. 9780521766173 (Cambridge University Press, 2010) pp. 1–600.
  26. M. Fabrizio, Landau-fermi liquids without quasiparticles, Physical Review B 102, 155122 (2020).
  27. P. Wölfle, Quasiparticles in condensed matter systems, Reports on Progress in Physics 81, 032501 (2018).
  28. E. N. Economou, Properties and use of the green’s functions, in Green’s Functions in Quantum Physics (Springer Berlin Heidelberg, 2006) pp. 263–283.
  29. R. M. Martin, L. Reining, and D. M. Ceperley, Particles and quasi-particles, in Interacting Electrons: Theory and Computational Approaches (Cambridge University Press, 2016) p. 144–168.
  30. R. Nehra and D. Roy, Topology of multipartite non-hermitian one-dimensional systems, Physical Review B 105, 195407 (2022).
  31. K. Balzer and M. Bonitz, Nonequilibrium Green’s Functions Approach to Inhomogeneous Systems (Springer Berlin Heidelberg, Berlin, Heidelberg, 2013).
  32. C. Lehmann, M. Schüler, and J. C. Budich, Dynamically induced exceptional phases in quenched interacting semimetals, Physical Review Letters 127, 106601 (2021).
  33. L. F. Santos and M. Rigol, Onset of quantum chaos in one-dimensional bosonic and fermionic systems and its relation to thermalization, Phys. Rev. E 81, 036206 (2010).
  34. Level clustering in the regular spectrum, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences 356, 375 (1977).
  35. O. Bohigas, M. J. Giannoni, and C. Schmit, Characterization of chaotic quantum spectra and universality of level fluctuation laws, Physical Review Letters 52, 1 (1984).
  36. It might be worth to note that one expects an infinite amount of complex poles, however in reality only the poles close to the real axis are of interest because they describe excitations on intermediate and long timescales.
  37. C. Karrasch, D. M. Kennes, and F. Heidrich-Meisner, Thermal conductivity of the one-dimensional fermi-hubbard model, Physical Review Letters 117, 116401 (2016).
  38. C. Karrasch, T. Prosen, and F. Heidrich-Meisner, Proposal for measuring the finite-temperature drude weight of integrable systems, Physical Review B 95, 060406 (2017).
  39. C. Karrasch, J. E. Moore, and F. Heidrich-Meisner, Real-time and real-space spin and energy dynamics in one-dimensional spin- 1 2 systems induced by local quantum quenches at finite temperatures, Physical Review B - Condensed Matter and Materials Physics 89, 075139 (2014).
  40. For small couplings hB⁢A⁢(kQ⁢P)≪1much-less-thansubscriptℎ𝐵𝐴superscript𝑘𝑄𝑃1h_{BA}(k^{QP})\ll 1italic_h start_POSTSUBSCRIPT italic_B italic_A end_POSTSUBSCRIPT ( italic_k start_POSTSUPERSCRIPT italic_Q italic_P end_POSTSUPERSCRIPT ) ≪ 1 this picture is still a good approximation, and the sharp band characteristic stays intact (see Fig. 3 lower row).
  41. B. Michen and J. C. Budich, Mesoscopic transport signatures of disorder-induced non-hermitian phases, Physical Review Research 4 (2022).

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 2 likes.