Is a photon ring invariably a closed structure? (2405.05011v1)
Abstract: In this study, we investigate the image of a rotating compact object (CO) illuminated by a geometrically thin, optically thin disk on the equatorial plane. As the radius of the CO's surface fluctuates, the CO may partially or entirely obscure the photon region. We observe that the perceived photon ring may exhibit discontinuities, deviating from a closed structure, and may even disappear entirely. We find that the disruption and disappearance of the photon ring are dependent on the observational angle$-$a novel phenomenon not previously observed in black hole imaging studies. Our study reveals that while the factors influencing this unique photon ring phenomenon are diverse and the outcomes complex, we can provide a clear and comprehensive explanation of the physical essence and variation trends of this phenomenon. We do this by introducing and analyzing the properties and interrelationships of three characteristic functions, $\tilde{\eta}$, $\eta_o$, and $\eta_s$ related to the photon impact parameters. Additionally, our analysis of the intensity cuts and inner shadows of the images uncovers patterns that differ significantly from the shadow curve.
- Event Horizon Telescope Collaboration, K. Akiyama et al., “First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole,” Astrophys. J. Lett. 875 (2019) L1, arXiv:1906.11238 [astro-ph.GA].
- Event Horizon Telescope Collaboration, K. Akiyama et al., “First Sagittarius A* Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole in the Center of the Milky Way,” Astrophys. J. Lett. 930 no. 2, (2022) L12, arXiv:2311.08680 [astro-ph.HE].
- Event Horizon Telescope Collaboration, K. Akiyama et al., “First M87 Event Horizon Telescope Results. VII. Polarization of the Ring,” Astrophys. J. Lett. 910 no. 1, (2021) L12, arXiv:2105.01169 [astro-ph.HE].
- Event Horizon Telescope Collaboration, K. Akiyama et al., “First Sagittarius A* Event Horizon Telescope Results. II. EHT and Multiwavelength Observations, Data Processing, and Calibration,” Astrophys. J. Lett. 930 no. 2, (2022) L13, arXiv:2311.08679 [astro-ph.HE].
- R.-S. Lu et al., “A ring-like accretion structure in M87 connecting its black hole and jet,” Nature 616 no. 7958, (2023) 686–690, arXiv:2304.13252 [astro-ph.HE].
- Event Horizon Telescope Collaboration, K. Akiyama et al., “First M87 Event Horizon Telescope Results. V. Physical Origin of the Asymmetric Ring,” Astrophys. J. Lett. 875 no. 1, (2019) L5, arXiv:1906.11242 [astro-ph.GA].
- Event Horizon Telescope Collaboration, K. Akiyama et al., “First M87 Event Horizon Telescope Results. VI. The Shadow and Mass of the Central Black Hole,” Astrophys. J. Lett. 875 no. 1, (2019) L6, arXiv:1906.11243 [astro-ph.GA].
- Event Horizon Telescope Collaboration, K. Akiyama et al., “First Sagittarius A* Event Horizon Telescope Results. VI. Testing the Black Hole Metric,” Astrophys. J. Lett. 930 no. 2, (2022) L17, arXiv:2311.09484 [astro-ph.HE].
- Z. Younsi, D. Psaltis, and F. Özel, “Black Hole Images as Tests of General Relativity: Effects of Spacetime Geometry,” Astrophys. J. 942 no. 1, (2023) 47, arXiv:2111.01752 [astro-ph.HE].
- K. Glampedakis and G. Pappas, “Can supermassive black hole shadows test the Kerr metric?,” Phys. Rev. D 104 no. 8, (2021) L081503, arXiv:2102.13573 [gr-qc].
- Event Horizon Telescope Collaboration, K. Akiyama et al., “First M87 Event Horizon Telescope Results. III. Data Processing and Calibration,” Astrophys. J. Lett. 875 no. 1, (2019) L3, arXiv:1906.11240 [astro-ph.GA].
- J. a. L. Rosa and D. Rubiera-Garcia, “Shadows of boson and Proca stars with thin accretion disks,” Phys. Rev. D 106 no. 8, (2022) 084004, arXiv:2204.12949 [gr-qc].
- J. a. L. Rosa, P. Garcia, F. H. Vincent, and V. Cardoso, “Observational signatures of hot spots orbiting horizonless objects,” Phys. Rev. D 106 no. 4, (2022) 044031, arXiv:2205.11541 [gr-qc].
- C. A. R. Herdeiro, A. M. Pombo, E. Radu, P. V. P. Cunha, and N. Sanchis-Gual, “The imitation game: Proca stars that can mimic the Schwarzschild shadow,” JCAP 04 (2021) 051, arXiv:2102.01703 [gr-qc].
- I. Sengo, P. V. P. Cunha, C. A. R. Herdeiro, and E. Radu, “The imitation game reloaded: effective shadows of dynamically robust spinning Proca stars,” arXiv:2402.14919 [gr-qc].
- F. H. Vincent, M. Wielgus, M. A. Abramowicz, E. Gourgoulhon, J. P. Lasota, T. Paumard, and G. Perrin, “Geometric modeling of M87* as a Kerr black hole or a non-Kerr compact object,” Astron. Astrophys. 646 (2021) A37, arXiv:2002.09226 [gr-qc].
- A. Chael, M. D. Johnson, and A. Lupsasca, “Observing the Inner Shadow of a Black Hole: A Direct View of the Event Horizon,” Astrophys. J. 918 no. 1, (2021) 6, arXiv:2106.00683 [astro-ph.HE].
- Y. Hou, Z. Zhang, H. Yan, M. Guo, and B. Chen, “Image of a Kerr-Melvin black hole with a thin accretion disk,” Phys. Rev. D 106 no. 6, (2022) 064058, arXiv:2206.13744 [gr-qc].
- Z. Zhang, Y. Hou, M. Guo, and B. Chen, “Imaging thick accretion disks and jets surrounding black holes,” arXiv:2401.14794 [astro-ph.HE].
- Y. Chen, R. Ding, Y. Liu, Y. Mizuno, J. Shu, H. Yu, and Y. Zeng, “Illuminating Black Hole Shadow with Dark Matter Annihilation,” arXiv:2404.16673 [hep-ph].
- S. E. Gralla, D. E. Holz, and R. M. Wald, “Black Hole Shadows, Photon Rings, and Lensing Rings,” Phys. Rev. D 100 no. 2, (2019) 024018, arXiv:1906.00873 [astro-ph.HE].
- Z. Hu, Z. Zhong, P.-C. Li, M. Guo, and B. Chen, “QED effect on a black hole shadow,” Phys. Rev. D 103 no. 4, (2021) 044057, arXiv:2012.07022 [gr-qc].
- Y. Hou, M. Guo, and B. Chen, “Revisiting the shadow of braneworld black holes,” Phys. Rev. D 104 no. 2, (2021) 024001, arXiv:2103.04369 [gr-qc].
- V. Perlick and O. Y. Tsupko, “Calculating black hole shadows: Review of analytical studies,” Phys. Rept. 947 (2022) 1–39, arXiv:2105.07101 [gr-qc].
- X. Wang, Y. Hou, and M. Guo, “How different are shadows of compact objects with and without horizons?,” JCAP 05 (2023) 036, arXiv:2301.04851 [gr-qc].
- M. D. Johnson et al., “Universal interferometric signatures of a black hole’s photon ring,” Sci. Adv. 6 no. 12, (2020) eaaz1310, arXiv:1907.04329 [astro-ph.IM].
- S. E. Gralla and A. Lupsasca, “Lensing by Kerr Black Holes,” Phys. Rev. D 101 no. 4, (2020) 044031, arXiv:1910.12873 [gr-qc].
- Y. Hou, P. Liu, M. Guo, H. Yan, and B. Chen, “Multi-level images around Kerr–Newman black holes,” Class. Quant. Grav. 39 no. 19, (2022) 194001, arXiv:2203.02755 [gr-qc].
- J. Huang, Z. Zhang, M. Guo, and B. Chen, “Images and flares of geodesic hotspots around a Kerr black hole,” arXiv:2402.16293 [gr-qc].
- P. V. P. Cunha and C. A. R. Herdeiro, “Shadows and strong gravitational lensing: a brief review,” Gen. Rel. Grav. 50 no. 4, (2018) 42, arXiv:1801.00860 [gr-qc].
- A. Grenzebach, V. Perlick, and C. Lämmerzahl, “Photon Regions and Shadows of Kerr-Newman-NUT Black Holes with a Cosmological Constant,” Phys. Rev. D 89 no. 12, (2014) 124004, arXiv:1403.5234 [gr-qc].
- S. Vagnozzi and L. Visinelli, “Hunting for extra dimensions in the shadow of M87*,” Phys. Rev. D 100 no. 2, (2019) 024020, arXiv:1905.12421 [gr-qc].
- L. Amarilla and E. F. Eiroa, “Shadow of a rotating braneworld black hole,” Phys. Rev. D 85 (2012) 064019, arXiv:1112.6349 [gr-qc].
- S.-W. Wei and Y.-X. Liu, “Observing the shadow of Einstein-Maxwell-Dilaton-Axion black hole,” JCAP 11 (2013) 063, arXiv:1311.4251 [gr-qc].
- M. Guo and P.-C. Li, “Innermost stable circular orbit and shadow of the 4D4𝐷4D4 italic_D Einstein–Gauss–Bonnet black hole,” Eur. Phys. J. C 80 no. 6, (2020) 588, arXiv:2003.02523 [gr-qc].
- V. Perlick, O. Y. Tsupko, and G. S. Bisnovatyi-Kogan, “Black hole shadow in an expanding universe with a cosmological constant,” Phys. Rev. D 97 no. 10, (2018) 104062, arXiv:1804.04898 [gr-qc].
- Z. Li and C. Bambi, “Measuring the Kerr spin parameter of regular black holes from their shadow,” JCAP 01 (2014) 041, arXiv:1309.1606 [gr-qc].
- X.-X. Zeng, H.-Q. Zhang, and H. Zhang, “Shadows and photon spheres with spherical accretions in the four-dimensional Gauss–Bonnet black hole,” Eur. Phys. J. C 80 no. 9, (2020) 872, arXiv:2004.12074 [gr-qc].
- P.-C. Li, M. Guo, and B. Chen, “Shadow of a Spinning Black Hole in an Expanding Universe,” Phys. Rev. D 101 no. 8, (2020) 084041, arXiv:2001.04231 [gr-qc].
- X.-X. Zeng and H.-Q. Zhang, “Influence of quintessence dark energy on the shadow of black hole,” Eur. Phys. J. C 80 no. 11, (2020) 1058, arXiv:2007.06333 [gr-qc].
- M. Wang, S. Chen, and J. Jing, “Shadow casted by a Konoplya-Zhidenko rotating non-Kerr black hole,” JCAP 10 (2017) 051, arXiv:1707.09451 [gr-qc].
- X. Hou, Z. Xu, and J. Wang, “Rotating Black Hole Shadow in Perfect Fluid Dark Matter,” JCAP 12 (2018) 040, arXiv:1810.06381 [gr-qc].
- Y. Chen, R. Roy, S. Vagnozzi, and L. Visinelli, “Superradiant evolution of the shadow and photon ring of Sgr A⋆⋆\star⋆,” Phys. Rev. D 106 no. 4, (2022) 043021, arXiv:2205.06238 [astro-ph.HE].
- Q. Gan, P. Wang, H. Wu, and H. Yang, “Photon spheres and spherical accretion image of a hairy black hole,” Phys. Rev. D 104 no. 2, (2021) 024003, arXiv:2104.08703 [gr-qc].
- M. Wang, S. Chen, and J. Jing, “Chaotic shadow of a non-Kerr rotating compact object with quadrupole mass moment,” Phys. Rev. D 98 no. 10, (2018) 104040, arXiv:1801.02118 [gr-qc].
- X.-M. Kuang and A. Övgün, “Strong gravitational lensing and shadow constraint from M87* of slowly rotating Kerr-like black hole,” Annals Phys. 447 (2022) 169147, arXiv:2205.11003 [gr-qc].
- S. Hu, D. Li, C. Deng, X. Wu, and E. Liang, “Influences of tilted thin accretion disks on the observational appearance of hairy black holes in Horndeski gravity,” JCAP 04 (2024) 089, arXiv:2309.10557 [gr-qc].
- W. Zeng, Y. Ling, Q.-Q. Jiang, and G.-P. Li, “Accretion disk for regular black holes with sub-Planckian curvature,” Phys. Rev. D 108 no. 10, (2023) 104072, arXiv:2308.00976 [gr-qc].
- Y. Meng, X.-M. Kuang, X.-J. Wang, B. Wang, and J.-P. Wu, “Images from disk and spherical accretions of hairy Schwarzschild black holes,” Phys. Rev. D 108 no. 6, (2023) 064013, arXiv:2306.10459 [gr-qc].
- L.-M. Cao, L.-Y. Li, X.-Y. Liu, and Y.-S. Zhou, “Appearance of de Sitter black holes and strong cosmic censorship,” Phys. Rev. D 109 no. 8, (2024) 084021, arXiv:2401.15408 [gr-qc].
- B. Hamil and B. C. Lütfüoğlu, “Noncommutative Schwarzschild black hole surrounded by quintessence: Thermodynamics, Shadows and Quasinormal modes,” Phys. Dark Univ. 44 (2024) 101484, arXiv:2401.09295 [gr-qc].
- I. De Martino, R. Della Monica, and D. Rubiera-Garcia, “Optical appearance of a nonsingular de Sitter core black hole geometry under several thin disk emissions,” Phys. Rev. D 108 no. 12, (2023) 124054, arXiv:2310.11039 [gr-qc].
- Y.-X. Huang, S. Guo, Y.-H. Cui, Q.-Q. Jiang, and K. Lin, “Influence of accretion disk on the optical appearance of the Kazakov-Solodukhin black hole,” Phys. Rev. D 107 no. 12, (2023) 123009, arXiv:2311.00302 [gr-qc].
- C. Zhang, Y. Ma, and J. Yang, “Black hole image encoding quantum gravity information,” Phys. Rev. D 108 no. 10, (2023) 104004, arXiv:2302.02800 [gr-qc].
- H. Huang, J. Kunz, J. Yang, and C. Zhang, “Light ring behind wormhole throat: Geodesics, images, and shadows,” Phys. Rev. D 107 no. 10, (2023) 104060, arXiv:2303.11885 [gr-qc].
- M. Guerrero, G. J. Olmo, D. Rubiera-Garcia, and D. Sáez-Chillón Gómez, “Multiring images of thin accretion disk of a regular naked compact object,” Phys. Rev. D 106 no. 4, (2022) 044070, arXiv:2205.12147 [gr-qc].
- L. Chakhchi, H. El Moumni, and K. Masmar, “Shadows and optical appearance of a power-Yang-Mills black hole surrounded by different accretion disk profiles,” Phys. Rev. D 105 no. 6, (2022) 064031.
- M. Guerrero, G. J. Olmo, D. Rubiera-Garcia, and D. S.-C. Gómez, “Shadows and optical appearance of black bounces illuminated by a thin accretion disk,” JCAP 08 (2021) 036, arXiv:2105.15073 [gr-qc].
- G.-P. Li and K.-J. He, “Shadows and rings of the Kehagias-Sfetsos black hole surrounded by thin disk accretion,” JCAP 06 (2021) 037, arXiv:2105.08521 [gr-qc].
- K. Wang, C.-J. Feng, and T. Wang, “Image of Kerr-de Sitter black holes illuminated by equatorial thin accretion disks,” arXiv:2309.16944 [gr-qc].
- J. Baines, T. Berry, A. Simpson, and M. Visser, “Painlevé–Gullstrand form of the Lense–Thirring Spacetime,” Universe 7 no. 4, (2021) 105, arXiv:2006.14258 [gr-qc].
- J. Baines, T. Berry, A. Simpson, and M. Visser, “Killing Tensor and Carter Constant for Painlevé–Gullstrand Form of Lense–Thirring Spacetime,” Universe 7 no. 12, (2021) 473, arXiv:2110.01814 [gr-qc].
- J. Baines, T. Berry, A. Simpson, and M. Visser, “Constant-r geodesics in the Painlevé–Gullstrand form of Lense–Thirring spacetime,” Gen. Rel. Grav. 54 no. 8, (2022) 79, arXiv:2202.09010 [gr-qc].
- B. Mashhoon, F. Hehl, and D. Theiss, “On the influence of the proper rotation of central bodies on the motions of planets and moons according to einstein’s theory of gravitation,” General Relativity and Gravitation 16 no. 8, (1984) 727–741.
- J. Baines, T. Berry, A. Simpson, and M. Visser, “Geodesics for the Painlevé–Gullstrand Form of Lense–Thirring Spacetime,” Universe 8 no. 2, (2022) 115, arXiv:2112.05228 [gr-qc].
- S. W. Davis and C. F. Gammie, “Covariant Radiative Transfer for Black Hole Spacetimes,” arXiv:1911.07950 [astro-ph.HE].
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.