The Enumerative Geometry and Arithmetic of Banana Nano-Manifolds (2405.04701v1)
Abstract: A banana manifold is a Calabi-Yau threefold fibered by Abelian surfaces whose singular fibers contain banana configurations: three rational curves meeting each other in two points. A nano-manifold is a Calabi-Yau threefold $X$ with very small Hodge numbers: $h{1,1}(X)+h{2,1}(X)\leq 6$. We construct four rigid banana nano-manifolds $\tilde{X}N$, $N\in {5,6,8,9 }$, each with Hodge numbers given by $(h{1,1},h{2,1})=(4,0)$. We compute the Donaldson-Thomas partition function for banana curve classes and show that the associated genus $g$ Gromov-Witten potential is a genus 2 meromorphic Siegel modular form of weight $2g-2$ for a certain discrete subgroup $P{*}{N} \subset Sp_{4}(\mathbb{R})$. We also compute the weight 4 modular form whose $p$th Fourier coefficient is given by the trace of the action of Frobenius on $H{3}_{et }(\tilde{X}N ,{\mathbb{Q}}{l})$ for almost all prime $p$. We observe that it is the unique weight 4 cusp form on $\Gamma_{0}(N)$.
- Théorie des topos et cohomologie étale des schémas. Tome 3, volume Vol. 305 of Lecture Notes in Mathematics. Springer-Verlag, Berlin-New York, 1973. Séminaire de Géométrie Algébrique du Bois-Marie 1963–1964 (SGA 4), Dirigé par M. Artin, A. Grothendieck et J. L. Verdier. Avec la collaboration de P. Deligne et B. Saint-Donat.
- Arnaud Beauville. Les familles stables de courbes elliptiques sur 𝐏1superscript𝐏1{\bf P}^{1}bold_P start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT admettant quatre fibres singulières. C. R. Acad. Sci. Paris Sér. I Math., 294(19):657–660, 1982.
- Kai Behrend. Donaldson-Thomas type invariants via microlocal geometry. Ann. of Math. (2), 170(3):1307–1338, 2009. arXiv:math/0507523.
- Jim Bryan. The Donaldson-Thomas partition function of the banana manifold. Algebr. Geom., 8(2):133–170, 2021. With an appendix coauthored with Stephen Pietromonaco. arXiv:math/1902.08695.
- CHL Calabi-Yau threefolds: curve counting, Mathieu moonshine and Siegel modular forms. Commun. Number Theory Phys., 14(4):785–862, 2020. arXiv:math/1811.06102.
- Calabi-Yau threefolds with small Hodge numbers. Fortschr. Phys., 66(6):1800029, 21, 2018. arXiv:1602.06303.
- Pierre Deligne. Théorie de Hodge. II. Inst. Hautes Études Sci. Publ. Math., (40):5–57, 1971.
- Pierre Deligne. Théorie de Hodge. III. Inst. Hautes Études Sci. Publ. Math., (44):5–77, 1974.
- Luis Dieulefait. On the modularity of rigid Calabi-Yau threefolds: epilogue. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 377:44–49, 241, 2010.
- Rigid Calabi-Yau threefolds over ℚℚ\mathbb{Q}blackboard_Q are modular. Expo. Math., 29(1):142–149, 2011. arXiv:math/0902.1466.
- V. Gritsenko. Elliptic genus of Calabi-Yau manifolds and Jacobi and Siegel modular forms. Algebra i Analiz, 11(5):100–125, 1999. arXiv:math/9906190.
- Local Calabi-Yau manifolds of type A~~𝐴\tilde{A}over~ start_ARG italic_A end_ARG via SYZ mirror symmetry. J. Geom. Phys., 139:103–138, 2019. arXiv:math/1605.00342.
- Serre’s modularity conjecture. I. Invent. Math., 178(3):485–504, 2009.
- Serre’s modularity conjecture. II. Invent. Math., 178(3):505–586, 2009.
- The LMFDB Collaboration. The L-functions and modular forms database. https://www.lmfdb.org, 2024. [Online; accessed 12 April 2024].
- Gromov-Witten theory and Donaldson-Thomas theory. I. Compos. Math., 142(5):1263–1285, 2006. arXiv:math.AG/0312059.
- Gopakumar-Vafa invariants via vanishing cycles. Invent. Math., 213(3):1017–1097, 2018. arXiv:math/1610.07303.
- On extremal rational elliptic surfaces. Math. Z., 193(4):537–558, 1986.
- Nina Morishige. Genus zero Gopakumar-Vafa invariants of Multi-Banana configurations. arXiv:math/2102.07965.
- David R. Morrison. Through the looking glass. In Mirror symmetry, III (Montreal, PQ, 1995), volume 10 of AMS/IP Stud. Adv. Math., pages 263–277. Amer. Math. Soc., Providence, RI, 1999. arXiv:math/9705028.
- John Pardon. Universally counting curves in Calabi–Yau threefolds. arXiv:math/2308.02948.
- Chad Schoen. On fiber products of rational elliptic surfaces with section. Math. Z., 197(2):177–199, 1988.
- Noriko Yui. Update on the modularity of Calabi-Yau varieties. In Calabi-Yau varieties and mirror symmetry (Toronto, ON, 2001), volume 38 of Fields Inst. Commun., pages 307–362. Amer. Math. Soc., Providence, RI, 2003. With an appendix by Helena Verrill.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.