Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 124 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 79 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

The Smith Fiber Sequence of Invertible Field Theories (2405.04649v1)

Published 6 May 2024 in math.AT, math-ph, and math.MP

Abstract: Smith homomorphisms are maps between bordism groups that change both the dimension and the tangential structure. We give a completely general account of Smith homomorphisms, unifying the many examples in the literature. We provide three definitions of Smith homomorphisms, including as maps of Thom spectra, and show they are equivalent. Using this, we identify the cofiber of the spectrum-level Smith map and extend the Smith homomorphism to a long exact sequence of bordism groups, which is a powerful computation tool. We discuss several examples of this long exact sequence, relating them to known constructions such as Wood's and Wall's sequences. Furthermore, taking Anderson duals yields a long exact sequence of invertible field theories, which has a rich physical interpretation. We developed the theory in this paper with applications in mind to symmetry breaking in quantum field theory, which we study in a companion paper.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (226)
  1. Anomalies of non-invertible self-duality symmetries: fractionalization and gauging, 2023. https://arxiv.org/abs/2308.11707.
  2. An ∞\infty∞-categorical approach to R𝑅Ritalic_R-line bundles, R𝑅Ritalic_R-module Thom spectra, and twisted R𝑅Ritalic_R-homology. J. Topol., 7(3):869–893, 2014. https://arxiv.org/abs/1403.4325.
  3. Units of ring spectra, orientations and Thom spectra via rigid infinite loop space theory. J. Topol., 7(4):1077–1117, 2014. https://arxiv.org/abs/1403.4320.
  4. Parametrized spectra, multiplicative Thom spectra and the twisted Umkehr map. Geom. Topol., 22(7):3761–3825, 2018. https://arxiv.org/abs/1112.2203.
  5. The structure of the Spin cobordism ring. Ann. of Math. (2), 86:271–298, 1967.
  6. Pin cobordism and related topics. Comment. Math. Helv., 44:462–468, 1969.
  7. Clifford modules. Topology, 3(Supplement 1):3–38, 1964.
  8. J. F. Adams. On Chern characters and the structure of the unitary group. Proc. Cambridge Philos. Soc., 57:189–199, 1961.
  9. J. F. Adams. Vector fields on spheres. Ann. of Math. (2), 75:603–632, 1962.
  10. J. F. Adams. On the groups J⁢(X)𝐽𝑋J(X)italic_J ( italic_X ). I. Topology, 2:181–195, 1963.
  11. J. F. Adams. On the groups J⁢(X)𝐽𝑋J(X)italic_J ( italic_X ). II. Topology, 3:137–171, 1965.
  12. J. F. Adams. On the groups J⁢(X)𝐽𝑋J(X)italic_J ( italic_X ). III. Topology, 3:193–222, 1965.
  13. J. F. Adams. On the groups J⁢(X)𝐽𝑋J(X)italic_J ( italic_X ). IV. Topology, 5:21–71, 1966.
  14. J. F. Adams. Stable homotopy and generalised homology. Chicago Lectures in Mathematics. University of Chicago Press, Chicago, Ill.-London, 1974.
  15. J. C. Alexander. On (U,Sp)USp({\rm U},{\rm Sp})( roman_U , roman_Sp ) bordism. Amer. J. Math., 97(3):617–625, 1975.
  16. Spinh and further generalisations of spin. Journal of Geometry and Physics, 164:104174, 2021. https://arxiv.org/abs/2008.04934.
  17. D.W. Anderson. Universal coefficient theorems for K𝐾Kitalic_K-theory, 1969. https://faculty.tcu.edu/gfriedman/notes/Anderson-UCT.pdf.
  18. M. F. Atiyah. Bordism and cobordism. Proc. Cambridge Philos. Soc., 57:200–208, 1961.
  19. M. F. Atiyah. Thom complexes. Proc. London Math. Soc. (3), 11:291–310, 1961.
  20. J. F. Adams and G. Walker. On complex Stiefel manifolds. Proc. Cambridge Philos. Soc., 61:81–103, 1965.
  21. Christian Bär. Elliptic symbols. Math. Nachr., 201:7–35, 1999.
  22. Tilman Bauer. Elliptic cohomology and projective spaces — a computation, 2003. https://people.kth.se/~tilmanb/papers/cpinfty.pdf.
  23. Spin modular categories. Quantum Topol., 8(3):459–504, 2017. https://arxiv.org/abs/1411.4232.
  24. A guide for computing stable homotopy groups. In Topology and quantum theory in interaction, volume 718 of Contemp. Math., pages 89–136. Amer. Math. Soc., Providence, RI, 2018. https://arxiv.org/abs/1801.07530.
  25. P. Bhattacharya and H. Chatham. On the EO-orientability of vector bundles. J. Topol., 15(4):2017–2044, 2022. https://arxiv.org/abs/2003.03795.
  26. Cohomology with coefficients in symmetric cat-groups. An extension of Eilenberg-MacLane’s classification theorem. Mathematical Proceedings of the Cambridge Philosophical Society, 114(1):163–189, 1993.
  27. Line defect quantum numbers & anomalies, 2022. https://arxiv.org/abs/2206.15401.
  28. Global anomalies & bordism of non-supersymmetric strings. J. High Energy Phys., (2):Paper No. 92, 71, 2024. https://arxiv.org/abs/2310.06895.
  29. Jonathan Beardsley. Relative Thom spectra via operadic Kan extensions. Algebr. Geom. Topol., 17(2):1151–1162, 2017. https://arxiv.org/abs/1601.04123.
  30. James C. Becker. Extensions of cohomology theories. Illinois J. Math., 14:551–584, 1970.
  31. Anna Beliakova. Refined invariants and TQFTs from Homfly skein theory. J. Knot Theory Ramifications, 8(5):569–587, 1999. https://arxiv.org/abs/math/9806090.
  32. Dave Benson. Spin modules for symmetric groups. J. London Math. Soc. (2), 38(2):250–262, 1988.
  33. New gravitational instantons and universal spin structures. Physics Letters B, 77(2):181–184, 1978.
  34. The transfer map and fiber bundles. Topology, 14:1–12, 1975.
  35. The eta invariant, PincsuperscriptPin𝑐\mathrm{Pin}^{c}roman_Pin start_POSTSUPERSCRIPT italic_c end_POSTSUPERSCRIPT bordism, and equivariant SpincsuperscriptSpin𝑐\mathrm{Spin}^{c}roman_Spin start_POSTSUPERSCRIPT italic_c end_POSTSUPERSCRIPT bordism for cyclic 2222-groups. Pacific J. Math., 128(1):1–24, 1987.
  36. PincsuperscriptPin𝑐{\mathrm{Pin}^{c}}roman_Pin start_POSTSUPERSCRIPT italic_c end_POSTSUPERSCRIPT cobordism and equivariant SpincsuperscriptSpin𝑐{\mathrm{Spin}^{c}}roman_Spin start_POSTSUPERSCRIPT italic_c end_POSTSUPERSCRIPT cobordism of cyclic 2-groups. Proceedings of the American Mathematical Society, 99(2):380–382, 1987.
  37. Connective real K𝐾Kitalic_K-theory of finite groups, volume 169 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2010.
  38. Christian Blanchet. Hecke algebras, modular categories and 3333-manifolds quantum invariants. Topology, 39(1):193–223, 2000. https://arxiv.org/abs/math/9803114.
  39. Brauer-Wall groups and truncated Picard spectra of K𝐾Kitalic_K-theory, 2023. https://arxiv.org/abs/2306.10112.
  40. KSp-characteristic classes determine Spinh cobordism, 2023. https://arxiv.org/abs/2312.08209.
  41. Raoul Bott. The stable homotopy of the classical groups. Ann. of Math. (2), 70:313–337, 1959.
  42. Raoul Bott. Lectures on K⁢(X)𝐾𝑋K(X)italic_K ( italic_X ). Mathematics Lecture Note Series. W. A. Benjamin, Inc., New York-Amsterdam, 1969.
  43. A. K. Bousfield. A classification of K𝐾Kitalic_K-local spectra. J. Pure Appl. Algebra, 66(2):121–163, 1990.
  44. Positive scalar curvature on simply connected spin pseudomanifolds. J. Topol. Anal., 15(2):413–443, 2023. https://arxiv.org/abs/1908.04420.
  45. The Adams spectral sequence for topological modular forms, volume 253 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2021.
  46. Positive scalar curvature on Pin±superscriptPinplus-or-minus{\rm Pin}^{\pm}roman_Pin start_POSTSUPERSCRIPT ± end_POSTSUPERSCRIPT- and spincsuperscriptspin𝑐{\rm spin}^{c}roman_spin start_POSTSUPERSCRIPT italic_c end_POSTSUPERSCRIPT-manifolds and manifolds with singularities. In Perspectives in scalar curvature. Vol. 2, pages 51–81. World Sci. Publ., Hackensack, NJ, [2023] ©2023. https://arxiv.org/abs/2103.00617.
  47. Edgar H. Brown, Jr. The Kervaire invariant of a manifold. In Algebraic topology (Proc. Sympos. Pure Math., Vol. XXII, Univ. Wisconsin, Madison, Wis., 1970), pages 65–71. Amer. Math. Soc., Providence, R.I., 1971.
  48. A. Borel and J.-P. Serre. Groupes de Lie et puissances réduites de Steenrod. Amer. J. Math., 75:409–448, 1953.
  49. Equivariant function spaces and stable homotopy theory. I. Comment. Math. Helv., 49:1–34, 1974.
  50. V. M. Buhštaber. Projectors in unitary cobordisms that are related to SUSU{\rm SU}roman_SU-theory. Uspehi Mat. Nauk, 27(6(168)):231–232, 1972.
  51. Ulrich Bunke. The universal η𝜂\etaitalic_η-invariant for manifolds with boundary. Q. J. Math., 66(2):473–506, 2015. https://arxiv.org/abs/1403.2030.
  52. Jonathan A. Campbell. Homotopy theoretic classification of symmetry protected phases, 2017. https://arxiv.org/abs/1708.04264.
  53. Élie Cartan. La topologie des espaces représentatifs des groupes de Lie. L’Enseignement Mathématique, 35(1–2):177–200, 1936.
  54. Differentiable periodic maps. Ergebnisse der Mathematik und ihrer Grenzgebiete, (N.F.), Band 33. Academic Press, Inc., Publishers, New York; Springer-Verlag, Berlin-Göttingen-Heidelberg, 1964.
  55. The relation of cobordism to K𝐾Kitalic_K-theories. Lecture Notes in Mathematics, No. 28. Springer-Verlag, Berlin-New York, 1966.
  56. Torsion in SUSU{\rm SU}roman_SU-bordism. Mem. Amer. Math. Soc., 60:74, 1966.
  57. Hood Chatham. An Orientation Map for Height p -1 Real E Theory. PhD thesis, Massachusetts Institute of Technology, 2020. https://arxiv.org/abs/1908.11496.
  58. Xuan Chen. Bundles of Irreducible Clifford Modules and the Existence of Spin Structures. ProQuest LLC, Ann Arbor, MI, 2017. Thesis (Ph.D.)–State University of New York at Stony Brook.
  59. Georgy Chernykh. Landweber exactness of the formal group law in c1subscript𝑐1c_{1}italic_c start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT-spherical bordism. 2022. https://arxiv.org/abs/2212.04552.
  60. Enumerating stably trivial vector bundles with higher real K𝐾Kitalic_K-theory, 2024. https://arxiv.org/abs/2403.04733.
  61. Anomalies of non-invertible symmetries in (3+1)d, 2023. https://arxiv.org/abs/2308.11706.
  62. M. C. Crabb and K. Knapp. James numbers. Math. Ann., 282(3):395–422, 1988.
  63. On exotic consistent anomalies in (1+1)⁢d11𝑑(1+1)d( 1 + 1 ) italic_d: a ghost story. SciPost Phys., 10(5):Paper No. 119, 28, 2021. https://arxiv.org/abs/2009.07273.
  64. Decorated ℤ2subscriptℤ2\mathbb{Z}_{2}blackboard_Z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT symmetry defects and their time-reversal anomalies. Physical Review D, 102(4), aug 2020. https://arxiv.org/abs/1910.14046.
  65. M. C. Crabb. On the K⁢O𝐙/2𝐾subscriptO𝐙2K{\rm O}_{{\bf Z}/2}italic_K roman_O start_POSTSUBSCRIPT bold_Z / 2 end_POSTSUBSCRIPT-Euler class. I. Proc. Roy. Soc. Edinburgh Sect. A, 117(1-2):115–137, 1991.
  66. James Cruickshank. Twisted homotopy theory and the geometric equivariant 1-stem. Topology Appl., 129(3):251–271, 2003.
  67. Larry W. Cusick. The cofibre of the transfer map. Proc. Amer. Math. Soc., 93(3):561–566, 1985.
  68. When the moduli space is an orbifold: Spontaneous breaking of continuous non-invertible symmetries, 2023. https://arxiv.org/abs/2309.06491.
  69. The anomaly that was not meant IIB. Fortschr. Phys., 70(1):Paper No. 2100168, 31, 2022. https://arxiv.org/abs/2107.14227.
  70. The chronicles of IIBordia: Dualities, bordisms, and the Swampland, 2023. https://arxiv.org/abs/2302.00007.
  71. A long exact sequence in symmetry breaking: order parameter constraints, defect anomaly-matching, and higher Berry phases, 2024. https://arxiv.org/abs/2309.16749.
  72. Arun Debray. Invertible phases for mixed spatial symmetries and the fermionic crystalline equivalence principle, 2021. https://arxiv.org/abs/2102.02941.
  73. Arun Debray. Bordism for the 2-group symmetries of the heterotic and CHL strings. 2023. https://arxiv.org/abs/2304.14764.
  74. İ. Dibağ. J𝐽Jitalic_J-approximation of complex projective spaces by lens spaces. Pacific J. Math., 191(2):223–242, 1999.
  75. İ. Dibağ. Determination of the J𝐽Jitalic_J-groups of complex projective and lens spaces. K𝐾Kitalic_K-Theory, 29(1):27–74, 2003.
  76. Smith homomorphisms and SpinhsuperscriptSpinℎ\mathrm{Spin}^{h}roman_Spin start_POSTSUPERSCRIPT italic_h end_POSTSUPERSCRIPT structures. 2024. To appear.
  77. Principal quasi-fibrations and fibre homotopy equivalence of bundles. Illinois J. Math., 3:285–305, 1959.
  78. Anomaly interplay in U⁢(2)U2\rm U(2)roman_U ( 2 ) gauge theories. J. High Energy Phys., 202(5):098, 20, 2020. https://arxiv.org/abs/2001.07731.
  79. The algebra of anomaly interplay. SciPost Phys., 10(3):Paper No. 074, 41, 2021. https://arxiv.org/abs/2011.10102.
  80. Toric 2-group anomalies via cobordism. J. High Energy Phys., 2023(7):Paper No. 19, 52, 2023. https://arxiv.org/abs/2302.12853. With an appendix by Arun Debray.
  81. The Euler class for connective k⁢o𝑘ok{\rm o}italic_k roman_o-theory and an application to immersions of quaternionic projective space. Indiana Univ. Math. J., 28(6):1025–1034, 1979.
  82. P. Deligne and J. S. Milne. Tannakian Categories, pages 101–228. Springer Berlin Heidelberg, Berlin, Heidelberg, 1982. https://www.jmilne.org/math/xnotes/tc.html.
  83. Duality, trace, and transfer. In Proceedings of the International Conference on Geometric Topology (Warsaw, 1978), pages 81–102. PWN, Warsaw, 1980.
  84. Vladimir Drinfeld. Infinite-dimensional vector bundles in algebraic geometry. In Pavel Etingof, Vladimir Retakh, and I. M. Singer, editors, The Unity of Mathematics: In Honor of the Ninetieth Birthday of I.M. Gelfand, pages 263–304. Birkhäuser Boston, Boston, MA, 2006. https://arxiv.org/abs/math/0309155.
  85. On counting associative submanifolds and Seiberg-Witten monopoles. Pure Appl. Math. Q., 15(4):1047–1133, 2019. https://arxiv.org/abs/1712.08383.
  86. What bordism-theoretic anomaly cancellation can do for U, 2022. https://arxiv.org/abs/2210.04911.
  87. Adams spectral sequences for non-vector-bundle Thom spectra, 2023. https://arxiv.org/abs/2305.01678.
  88. Gauging noninvertible defects: a 2-categorical perspective. Lett. Math. Phys., 113(2):Paper No. 36, 42, 2023. https://arxiv.org/abs/2211.08436.
  89. Bosonization and anomaly indicators of (2+1)-d fermionic topological orders. 2023. https://arxiv.org/abs/2312.13341.
  90. Beno Eckmann. Espaces fibrés et homotopie. In Colloque de topologie (espaces fibrés), Bruxelles, 1950, pages 83–99. Georges Thone, Liège, 1951.
  91. Tobias Ekholm. Immersions in the metastable range and spin structures on surfaces. Math. Scand., 83(1):5–41, 1998.
  92. S. Feder and S. Gitler. Stable homotopy types of stunted complex projective spaces. Proc. Cambridge Philos. Soc., 73:431–438, 1973.
  93. S. Feder and S. Gitler. The classification of stunted projective spaces by stable homotopy type. Trans. Amer. Math. Soc., 225:59–81, 1977.
  94. On Ramond-Ramond fields and K𝐾Kitalic_K-theory. J. High Energy Phys., 2000(5):Paper 44, 14, 2000. https://arxiv.org/abs/hep-th/0002027.
  95. Invertible phases of matter with spatial symmetry. Adv. Theor. Math. Phys., 24(7):1773–1788, 2020. https://arxiv.org/abs/1901.06419.
  96. Reflection positivity and invertible topological phases. Geometry & Topology, 25(3):1165–1330, 2021. https://arxiv.org/abs/1604.06527.
  97. Exactly solvable model for a 4+1⁢D41D4+1\mathrm{D}4 + 1 roman_D beyond-cohomology symmetry-protected topological phase. Phys. Rev. B, 101:155124, Apr 2020. https://arxiv.org/abs/1912.05565.
  98. Dagger n𝑛nitalic_n-categories, 2024. https://arxiv.org/abs/2403.01651.
  99. Consistent orientation of moduli spaces. In The many facets of geometry, pages 395–419. Oxford Univ. Press, Oxford, 2010. https://arxiv.org/abs/0711.1909.
  100. Paul M. N. Feehan and Thomas G. Leness. SO⁢(3)SO3\rm SO(3)roman_SO ( 3 ) monopoles, level-one Seiberg-Witten moduli spaces, and Witten’s conjecture in low degrees. In Proceedings of the 1999 Georgia Topology Conference (Athens, GA), volume 124, pages 221–326, 2002. https://arxiv.org/abs/math/0106238.
  101. Setting the quantum integrand of M-theory. Comm. Math. Phys., 263(1):89–132, 2006. https://arxiv.org/abs/hep-th/0409135.
  102. Daniel S. Freed. Lectures on field theory and topology, volume 133 of CBMS Regional Conference Series in Mathematics. American Mathematical Society, Providence, RI, 2019. Published for the Conference Board of the Mathematical Sciences.
  103. Daniel S. Freed. What is an anomaly? 2023. https://arxiv.org/abs/2307.08147.
  104. The character map in non-abelian cohomology—twisted, differential, and generalized. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, [2024] ©2024. https://arxiv.org/abs/2009.11909.
  105. Relative quantum field theory. Comm. Math. Phys., 326(2):459–476, 2014. https://arxiv.org/abs/1212.1692.
  106. Søren Galatius. Lecture on invertible field theories. In Quantum field theory and manifold invariants, volume 28 of IAS/Park City Math. Ser., pages 347–402. Amer. Math. Soc., Providence, RI, [2021] ©2021. https://arxiv.org/abs/1912.08706.
  107. Dai-Freed anomalies in particle physics. J. High Energy Phys., 2019(8):003, 77, 2019. https://arxiv.org/abs/1808.00009.
  108. V. Giambalvo. On ⟨8⟩delimited-⟨⟩8\langle 8\rangle⟨ 8 ⟩-cobordism. Illinois J. Math., 15:533–541, 1971.
  109. V. Giambalvo. Cobordism of line bundles with a relation. Illinois J. Math., 17:442–449, 1973.
  110. V. Giambalvo. Pin and Pin’ cobordism. Proc. Amer. Math. Soc., 39:395–401, 1973.
  111. The 2-dimensional stable homotopy hypothesis. J. Pure Appl. Algebra, 223(10):4348–4383, 2019. https://arxiv.org/abs/1712.07218.
  112. Symmetric and exterior powers of categories. Transformation Groups, 19(1):57–103, Mar 2014. https://arxiv.org/abs/1110.4753.
  113. Stiefel-Whitney classes of real representations of finite groups. J. Algebra, 126(2):327–347, 1989.
  114. Une extension d’un théorème de Rohlin sur la signature. In Seminar on Real Algebraic Geometry (Paris, 1977/1978 and Paris, 1978/1979), volume 9 of Publ. Math. Univ. Paris VII, pages 69–80. Univ. Paris VII, Paris, 1980.
  115. Generalized Tate cohomology. Mem. Amer. Math. Soc., 113(543):viii+178, 1995.
  116. The homotopy type of the cobordism category. Acta Mathematica, 202(2):195–239, 2009. https://arxiv.org/abs/math/0605249.
  117. Fermionic finite-group gauge theories and interacting symmetric/crystalline orders via cobordisms. Comm. Math. Phys., 376(2):1073–1154, 2020. https://arxiv.org/abs/1812.11959.
  118. Time reversal, S⁢U⁢(N)𝑆𝑈𝑁SU(N)italic_S italic_U ( italic_N ) Yang-Mills and cobordisms: interacting topological superconductors/insulators and quantum spin liquids in 3+1⁢D31𝐷3+1D3 + 1 italic_D. Ann. Physics, 394:244–293, 2018. https://arxiv.org/abs/1711.11587.
  119. Daniel Grady. Deformation classes of invertible field theories and the Freed–Hopkins conjecture, 2023. https://arxiv.org/abs/2310.15866.
  120. Meng Guo. Some Calculations of Cobordism Groups and Their Applications in Physics. PhD thesis, Harvard University, 2018. https://dash.harvard.edu/bitstream/handle/1/40050106/GUO-DISSERTATION-2018.pdf?sequence=4.
  121. Twisted spin cobordism and positive scalar curvature. J. Topol., 13(1):1–58, 2020. https://arxiv.org/abs/1311.3164.
  122. Nonorientable 4444-manifolds with fundamental group of order 2222. Trans. Amer. Math. Soc., 344(2):649–665, 1994.
  123. Anomaly matching in the symmetry broken phase: Domain walls, CPT, and the Smith isomorphism. SciPost Physics, 8(4), Apr 2020. https://arxiv.org/abs/1910.14039.
  124. R. P. Held and D. Sjerve. On the stable homotopy type of Thom complexes. Canadian J. Math., 25:1285–1294, 1973.
  125. Quadratic functions in geometry, topology, and M-theory. J. Differential Geom., 70(3):329–452, 07 2005. https://arxiv.org/abs/math/0211216.
  126. On certain 5-manifolds with fundamental group of order 2. Q. J. Math., 64(1):149–175, 2013. https://arxiv.org/abs/0903.5244.
  127. Chang-Tse Hsieh. Discrete gauge anomalies revisited, 2018. https://arxiv.org/abs/1808.02881.
  128. Anomaly inflow and p𝑝pitalic_p-form gauge theories. Comm. Math. Phys., 391(2):495–608, 2022. https://arxiv.org/abs/2003.11550.
  129. Jiahao Hu. Invariants of real vector bundles, 2023. https://arxiv.org/abs/2310.05061.
  130. I. M. James. Spaces associated with Stiefel manifolds. Proc. London Math. Soc. (3), 9:115–140, 1959.
  131. I. M. James. The topology of Stiefel manifolds. London Mathematical Society Lecture Note Series, No. 24. Cambridge University Press, Cambridge-New York-Melbourne, 1976.
  132. Bas Janssens. Generalised spin structures in general relativity. Ann. Henri Poincaré, 19(5):1587–1610, 2018.
  133. Theo Johnson-Freyd. Spin, statistics, orientations, unitarity. Algebr. Geom. Topol., 17(2):917–956, 2017. https://arxiv.org/abs/1507.06297.
  134. On the 576-fold periodicity of the spectrum SQFT: The proof of the lower bound via the Anderson duality pairing, 2024. https://arxiv.org/abs/2404.06333.
  135. Modeling stable one-types. Theory and Applications of Categories, 26(20):520–537, 2012. http://www.tac.mta.ca/tac/volumes/26/20/26-20.pdf.
  136. Ryohei Kobayashi. Anomaly constraint on chiral central charge of (2+1)⁢d21d(2+1)\mathrm{d}( 2 + 1 ) roman_d topological order. Phys. Rev. Res., 3:023107, May 2021. https://arxiv.org/abs/2101.01018.
  137. S. O. Kochman. Bordism, stable homotopy and Adams spectral sequences, volume 7 of Fields Institute Monographs. American Mathematical Society, Providence, RI, 1996.
  138. Katsuhiro Komiya. Oriented bordism and involutions. Osaka Math. J., 9:165–181, 1972.
  139. Applications of the transfer to stable homotopy theory. Bull. Amer. Math. Soc., 78:981–987, 1972.
  140. M. Kreck. Some closed 4444-manifolds with exotic differentiable structure. In Algebraic topology, Aarhus 1982 (Aarhus, 1982), volume 1051 of Lecture Notes in Math., pages 246–262. Springer, Berlin, 1984.
  141. A calculation of Pin+superscriptPin\mathrm{Pin}^{+}roman_Pin start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT bordism groups. Commentarii Mathematici Helvetici, 65(1):434–447, Dec 1990.
  142. PinPin{\rm Pin}roman_Pin structures on low-dimensional manifolds. In Geometry of low-dimensional manifolds, 2 (Durham, 1989), volume 151 of London Math. Soc. Lecture Note Ser., pages 177–242. Cambridge Univ. Press, Cambridge, 1990.
  143. Fermionic symmetry protected topological phases and cobordisms. J. High Energy Phys., 2015(12):052, front matter+20pp, 2015. https://arxiv.org/abs/1406.7329.
  144. Splitting Madsen-Tillmann spectra I. Twisted transfer maps. Bull. Belg. Math. Soc. Simon Stevin, 25(2):263–304, 2018. https://arxiv.org/abs/1407.7201.
  145. Kee Yuen Lam. Fiber homotopic trivial bundles over complex projective spaces. Proc. Amer. Math. Soc., 33:211–212, 1972.
  146. Peter S. Landweber. On the symplectic bordism groups of the spaces Sp⁢(n)Sp𝑛{\rm Sp}(n)roman_Sp ( italic_n ), HP⁢(n)HP𝑛{\rm HP}(n)roman_HP ( italic_n ), and BSp⁢(n)BSp𝑛{\rm BSp}(n)roman_BSp ( italic_n ). Michigan Math. J., 15:145–153, 1968.
  147. R. Lashof. Poincaré duality and cobordism. Trans. Amer. Math. Soc., 109:257–277, 1963.
  148. Gerd Laures. On cobordism of manifolds with corners. Trans. Amer. Math. Soc., 352(12):5667–5688, 2000.
  149. H. Blaine Lawson, Jr. SpinhsuperscriptSpinℎ{\rm Spin}^{h}roman_Spin start_POSTSUPERSCRIPT italic_h end_POSTSUPERSCRIPT manifolds. SIGMA Symmetry Integrability Geom. Methods Appl., 19:Paper No. 012, 7, 2023. https://arxiv.org/abs/2301.09683.
  150. Huaiyu Li. Discussions on Dai-Freed anomalies. Master’s thesis, Uppsala University, 2019. https://www.diva-portal.org/smash/get/diva2:1366363/FULLTEXT01.pdf.
  151. Harald Lindner. Adjunctions in monoidal categories. Manuscripta Math., 26(1-2):123–139, 1978.
  152. Equivariant stable homotopy theory, volume 1213 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1986. http://www.math.uchicago.edu/~may/BOOKS/equi.pdf.
  153. Real pinor bundles and real Lipschitz structures. Asian J. Math., 23(5):749–836, 2019. https://arxiv.org/abs/1606.07894.
  154. Twisted iterated algebraic K𝐾Kitalic_K-theory and topological T-duality for sphere bundles. Ann. K-Theory, 5(1):1–42, 2020. https://arxiv.org/abs/1601.06285.
  155. Bulk anyons as edge symmetries: Boundary phase diagrams of topologically ordered states. Phys. Rev. B, 104:075141, Aug 2021. https://arxiv.org/abs/2003.04328.
  156. Mark Mahowald. A short proof of the James periodicity of πk+p⁢(Vk+m,m)subscript𝜋𝑘𝑝subscript𝑉𝑘𝑚𝑚\pi_{k+p}(V_{k+m,m})italic_π start_POSTSUBSCRIPT italic_k + italic_p end_POSTSUBSCRIPT ( italic_V start_POSTSUBSCRIPT italic_k + italic_m , italic_m end_POSTSUBSCRIPT ). Proc. Amer. Math. Soc., 16:512, 1965.
  157. Karl Heinz Mayer. Elliptische Differentialoperatoren und Ganzzahligkeitssätze für charakteristische Zahlen. Topology, 4:295–313, 1965.
  158. J. Peter May. E∞subscript𝐸E_{\infty}italic_E start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ring spaces and E∞subscript𝐸E_{\infty}italic_E start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ring spectra. Lecture Notes in Mathematics, Vol. 577. Springer-Verlag, Berlin-New York, 1977. With contributions by Frank Quinn, Nigel Ray, and Jørgen Tornehave.
  159. Lennart Meier. Relatively free 𝑇𝑀𝐹𝑇𝑀𝐹\mathit{TMF}italic_TMF-modules, 2017. https://webspace.science.uu.nl/~meier007/RelativelyFree4.pdf.
  160. Keith Mills. The structure of the Spinh bordism spectrum, 2023. https://arxiv.org/abs/2306.17709.
  161. G. E. Mitchell. Bordism of manifolds with oriented boundaries. Proc. Amer. Math. Soc., 47:208–214, 1975.
  162. Stable homotopy hypothesis in the Tamsamani model. Topology Appl., 316:Paper No. 108106, 40, 2022. https://arxiv.org/abs/2001.05577.
  163. Kaoru Morisugi. Graph constructions and transfer maps. Bull. Fac. Ed. Wakayama Univ. Natur. Sci., 59(59):1–9, 2009.
  164. Reflection structures and spin statistics in low dimensions, 2023. https://arxiv.org/abs/2301.06664.
  165. Ib Madsen and Ulrike Tillmann. The stable mapping class group and Q⁢(ℂ⁢P+∞)𝑄ℂsubscriptsuperscriptPQ(\mathbb{C}\mathrm{P}^{\infty}_{+})italic_Q ( blackboard_C roman_P start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT + end_POSTSUBSCRIPT ). Invent. Math., 145(3):509–544, 2001.
  166. Cobordism conjecture, anomalies, and the string lamppost principle. J. High Energy Phys., 2021(1):Paper No. 063, 46, 2021. https://arxiv.org/abs/2008.11729.
  167. Ib Madsen and Michael Weiss. The stable moduli space of Riemann surfaces: Mumford’s conjecture. Ann. of Math. (2), 165(3):843–941, 2007. https://arxiv.org/abs/math/0212321.
  168. Masayoshi Nagase. SpinqsuperscriptSpin𝑞{\rm Spin}^{q}roman_Spin start_POSTSUPERSCRIPT italic_q end_POSTSUPERSCRIPT structures. J. Math. Soc. Japan, 47(1):93–119, 1995.
  169. Hoang Kim Nguyen. On the infinite loop space structure of the cobordism category. Algebraic & Geometric Topology, 17(2):1021–1040, 2017. https://arxiv.org/abs/1505.03490.
  170. S. P. Novikov. Methods of algebraic topology from the point of view of cobordism theory. Izv. Akad. Nauk SSSR Ser. Mat., 31:855–951, 1967.
  171. Mohammad Obiedat. On J𝐽Jitalic_J-orders of elements of K⁢O⁢(𝐂⁢Pm)𝐾O𝐂superscriptP𝑚K{\rm O}({\bf C}{\rm P}^{m})italic_K roman_O ( bold_C roman_P start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT ). J. Math. Soc. Japan, 53(4):919–932, 2001. https://arxiv.org/abs/math/9906027.
  172. Quaternionic monopoles. Comm. Math. Phys., 180(2):363–388, 1996. https://arxiv.org/abs/alg-geom/9505029.
  173. Deepam Patel. De Rham ℰℰ\mathcal{E}caligraphic_E-factors. Inventiones mathematicae, 190(2):299–355, Nov 2012. http://www.math.purdue.edu/~patel471/deRhamep.pdf.
  174. T. E. Panov and G. Chernykh. S⁢U𝑆𝑈SUitalic_S italic_U-linear operations in complex cobordism and the c1subscript𝑐1c_{1}italic_c start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT-spherical bordism theory. Izv. Ross. Akad. Nauk Ser. Mat., 87(4):133–165, 2023. https://arxiv.org/abs/2106.11876.
  175. F. P. Peterson. Lectures on Cobordism Theory. Lectures in Mathematics. Kinokuniya Book Store Co., Ltd., 1968.
  176. Fred William Roush. Transfer in generalized cohomology theories. ProQuest LLC, Ann Arbor, MI, 1972. Thesis (Ph.D.)–Princeton University.
  177. Relating cut and paste invariants and TQFTS. Q. J. Math., 73(2):579–607, 2022. https://arxiv.org/abs/1803.02939.
  178. Normal structures and bordism theory, with applications to M⁢Sp∗𝑀subscriptSpM{\rm Sp}_{{}^{*}}italic_M roman_Sp start_POSTSUBSCRIPT start_FLOATSUPERSCRIPT ∗ end_FLOATSUPERSCRIPT end_POSTSUBSCRIPT. Mem. Amer. Math. Soc., 12(193):ix+66, 1977.
  179. Oscar Randal-Williams. Monodromy and mapping class groups of 3-dimensional hypersurfaces, 2023. https://arxiv.org/abs/2308.06397.
  180. Hisham Sati. Geometric and topological structures related to M-branes. In Superstrings, geometry, topology, and C∗superscript𝐶∗C^{\ast}italic_C start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT-algebras, volume 81 of Proc. Sympos. Pure Math., pages 181–236. Amer. Math. Soc., Providence, RI, 2010. https://arxiv.org/abs/1001.5020.
  181. Hisham Sati. Geometric and topological structures related to M-branes II: Twisted string and stringc structures. J. Aust. Math. Soc., 90(1):93–108, 2011. https://arxiv.org/abs/1007.5419.
  182. Hisham Sati. Twisted topological structures related to M-branes. Int. J. Geom. Methods Mod. Phys., 8(5):1097–1116, 2011. https://arxiv.org/abs/1008.1755.
  183. Hisham Sati. Twisted topological structures related to M-branes II: twisted Wu and Wuc structures. Int. J. Geom. Methods Mod. Phys., 9(7):1250056, 21, 2012. https://arxiv.org/abs/1109.4461.
  184. Hisham Sati. Ninebrane structures. Int. J. Geom. Methods Mod. Phys., 12(4):1550041, 24, 2015. https://arxiv.org/abs/1405.7686.
  185. Jean-Pierre Serre. Groupes d’homotopie et classes de groupes abéliens. Ann. of Math. (2), 58:258–294, 1953.
  186. Katsuyuki Shibata. Oriented and weakly complex bordism algebra of free periodic maps. Trans. Amer. Math. Soc., 177:199–220, 1973.
  187. François Sigrist. Deux propriétés des groupes J⁢(C⁢P2⁢n)𝐽𝐶superscript𝑃2𝑛J(CP^{2n})italic_J ( italic_C italic_P start_POSTSUPERSCRIPT 2 italic_n end_POSTSUPERSCRIPT ). Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. (8), 59(5):413–415 (1976), 1975.
  188. Christopher J. Schommer-Pries. Central extensions of smooth 2-groups and a finite-dimensional string 2-group. Geom. Topol., 15(2):609–676, 2011. https://arxiv.org/abs/0911.2483.
  189. Christopher Schommer-Pries. Invertible topological field theories, 2017. https://arxiv.org/abs/1712.08029.
  190. Many-body topological invariants in fermionic symmetry-protected topological phases: Cases of point group symmetries. Phys. Rev. B, 95:205139, May 2017. https://arxiv.org/abs/1609.05970.
  191. Fivebrane structures. Rev. Math. Phys., 21(10):1197–1240, 2009. https://arxiv.org/abs/0805.0564.
  192. Twisted differential string and fivebrane structures. Comm. Math. Phys., 315(1):169–213, 2012. https://arxiv.org/abs/0910.4001.
  193. What is an elliptic object? In Topology, geometry and quantum field theory, volume 308 of London Math. Soc. Lecture Note Ser., pages 247–343. Cambridge Univ. Press, Cambridge, 2004. https://math.berkeley.edu/~teichner/Papers/Oxford.pdf.
  194. Norman Steenrod. The Topology of Fibre Bundles. Princeton Mathematical Series, vol. 14. Princeton University Press, Princeton, NJ, 1951.
  195. Luuk Stehouwer. Interacting SPT phases are not Morita invariant. Lett. Math. Phys., 112(3):Paper No. 64, 25, 2022. https://arxiv.org/abs/2110.07408.
  196. Luuk Stehouwer. The categorical spin-statistics theorem, 2024. https://arxiv.org/abs/2403.02282.
  197. Robert E. Stong. Determination of H∗⁢(BO⁢(k,⋯,∞),Z2)superscript𝐻∗BO𝑘⋯subscript𝑍2H^{\ast}({\rm BO}(k,\cdots,\infty),Z_{2})italic_H start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( roman_BO ( italic_k , ⋯ , ∞ ) , italic_Z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) and H∗⁢(BU⁢(k,⋯,∞),Z2)superscript𝐻∗BU𝑘⋯subscript𝑍2H^{\ast}({\rm BU}(k,\cdots,\infty),Z_{2})italic_H start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( roman_BU ( italic_k , ⋯ , ∞ ) , italic_Z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ). Trans. Amer. Math. Soc., 107:526–544, 1963.
  198. Robert E. Stong. Notes on cobordism theory. Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1968. Mathematical notes.
  199. R. E. Stong. Bordism and involutions. Ann. of Math. (2), 90:47–74, 1969.
  200. Stephan Stolz. Exotic structures on 4444-manifolds detected by spectral invariants. Invent. Math., 94(1):147–162, 1988.
  201. Stephan Stolz. Concordance classes of positive scalar curvature metrics, 1998. https://www3.nd.edu/~stolz/preprint.html.
  202. Twisted Morava K-theory and E-theory. J. Topol., 8(4):887–916, 2015. https://arxiv.org/abs/1109.3867.
  203. Variations of rational higher tangential structures. J. Geom. Phys., 130:229–248, 2018. https://arxiv.org/abs/1612.06983.
  204. Twisted Morava K-theory and connective covers of Lie groups. Algebr. Geom. Topol., 21(5):2223–2255, 2021. https://arxiv.org/abs/1711.05389.
  205. Hirotaka Tamanoi. Multiplicative indecomposable splittings of M⁢Sp[2]𝑀subscriptSpdelimited-[]2M{\rm Sp}_{[2]}italic_M roman_Sp start_POSTSUBSCRIPT [ 2 ] end_POSTSUBSCRIPT. Math. Z., 225(4):577–610, 1997.
  206. Emery Thomas. On the cohomology groups of the classifying space for the stable spinor groups. Bol. Soc. Mat. Mexicana (2), 7:57–69, 1962.
  207. Alex Turzillo. Diagrammatic state sums for 2D pin-minus TQFTs. J. High Energy Phys., 2020(3):019, 26, 2020. https://arxiv.org/abs/1811.12654.
  208. Why are fractional charges of orientifolds compatible with Dirac quantization? SciPost Phys., 7:58, 2019. https://arxiv.org/abs/1805.02772.
  209. Anderson self-duality of topological modular forms, its differential-geometric manifestations, and vertex operator algebras, 2023. https://arxiv.org/abs/2305.06196.
  210. Topological modular forms and the absence of all heterotic global anomalies. Comm. Math. Phys., 402(2):1585–1620, 2023. https://arxiv.org/abs/2108.13542.
  211. Fuichi Uchida. Exact sequences involving cobordism groups of immersions. Osaka Math. J., 6:397–408, 1969.
  212. Fuichi Uchida. The structure of the cobordism groups B⁢(n,k)𝐵𝑛𝑘B(n,\,k)italic_B ( italic_n , italic_k ) of bundles over manifolds with involution. Osaka Math. J., 7:193–202, 1970.
  213. C. T. C. Wall. Determination of the cobordism ring. Ann. of Math. (2), 72:292–311, 1960.
  214. Grant Walker. Estimates for the complex and quaternionic James numbers. Quart. J. Math. Oxford Ser. (2), 32(128):467–489, 1981.
  215. Christoph Weis. The Drinfel’d centres of String 2-groups, 2022. https://arxiv.org/abs/2202.01271.
  216. R.M.W. Wood. K-theory and the complex projective plane. 1963.
  217. Higher anomalies, higher symmetries, and cobordisms I: classification of higher-symmetry-protected topological states and their boundary fermionic/bosonic anomalies via a generalized cobordism theory. Ann. Math. Sci. Appl., 4(2):107–311, 2019. https://arxiv.org/abs/1812.11967.
  218. Beyond standard models and grand unifications: anomalies, topological terms, and dynamical constraints via cobordisms. J. High Energy Phys., 2020(7):062, 90, 2020. https://arxiv.org/abs/1910.14668.
  219. Nonperturbative definition of the standard models. Phys. Rev. Res., 2:023356, Jun 2020. https://arxiv.org/abs/1809.11171.
  220. A new SU⁢(2)SU2\rm SU(2)roman_SU ( 2 ) anomaly. J. Math. Phys., 60(5):052301, 23, 2019. https://arxiv.org/abs/1810.00844.
  221. Higher anomalies, higher symmetries, and cobordisms II: Lorentz symmetry extension and enriched bosonic/fermionic quantum gauge theory. Ann. Math. Sci. Appl., 5(2):171–257, 2020. https://arxiv.org/abs/1912.13504.
  222. Gauge enhanced quantum criticality beyond the standard model. Phys. Rev. D, 106:025013, Jul 2022. https://arxiv.org/abs/2106.16248.
  223. Mayuko Yamashita. Differential models for the Anderson dual to bordism theories and invertible QFT’s, II. J. Gökova Geom. Topol. GGT, 16:65–97, 2023. https://arxiv.org/abs/2110.14828.
  224. Kazuya Yonekura. On the cobordism classification of symmetry protected topological phases. Comm. Math. Phys., 368(3):1121–1173, 2019. https://arxiv.org/abs/1803.10796.
  225. Zen-ichi Yosimura. Universal coefficient sequences for cohomology theories of CW-spectra. Osaka J. Math., 12(2):305–323, 1975.
  226. Differential models for the Anderson dual to bordism theories and invertible QFT’s, I. J. Gökova Geom. Topol. GGT, 16:1–64, 2023. https://arxiv.org/abs/2106.09270.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com
Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 3 likes.

Upgrade to Pro to view all of the tweets about this paper: