Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 177 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Metallic mean fractal systems and their tilings (2405.04458v1)

Published 7 May 2024 in cond-mat.other, math-ph, and math.MP

Abstract: Fractals and quasiperiodic structures share self-similarity as a structural property. Motivated by the link between Fibonacci fractals and quasicrystals which are scaled by the golden mean ratio $\frac{1+\sqrt{5}}{2}$, we introduce and characterize a family of metallic-mean ratio fractals. We calculate the spatial properties of this generalized family, including their boundaries, which are also fractal. We then demonstrate how these fractals can be related to aperiodic tilings, and show how we can decorate them to produce new, fractal tilings.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (53)
  1. J. Feder. Fractals. Springer Science & Business Media, 2013.
  2. B. Mandelbrot. Fractals. Freeman San Francisco, 1977.
  3. M. F. Barnsley. Fractals everywhere. Academic press, 2014.
  4. T. Nakayama. Fractal structures in condensed matter physics. In Mathematics of Complexity and Dynamical Systems. 2009.
  5. M. B. Isichenko. Percolation, statistical topography, and transport in random media. Reviews of modern physics, 64(4):961, 1992.
  6. Random walks, critical phenomena, and triviality in quantum field theory. Springer Science & Business Media, 2013.
  7. B. O’Shaughnessy and I. Procaccia. Diffusion on fractals. Physical Review A, 32(5):3073, 1985.
  8. B. O’Shaughnessy and I. Procaccia. Analytical solutions for diffusion on fractal objects. Physical review letters, 54(5):455, 1985.
  9. S. Pai and A. Prem. Topological states on fractal lattices. Physical Review B, 100(15):155135, 2019.
  10. Higher-order topological phases on fractal lattices. Physical Review B, 105(20):L201301, 2022.
  11. Photonic floquet topological insulators in a fractal lattice. Light: Science & Applications, 9(1):128, 2020.
  12. Higher-order topological phase in an acoustic fractal lattice. arXiv preprint arXiv:2205.05298, 2022.
  13. Properties of laughlin states on fractal lattices. Journal of Statistical Mechanics: Theory and Experiment, 2023(5):053103, 2023.
  14. Observation of fractal higher-order topological states in acoustic metamaterials. Science Bulletin, 67(20):2069–2075, 2022.
  15. Terahertz electric response of fractal metamaterial structures. Physical Review B, 77(4):045124, 2008.
  16. Broadband focusing acoustic lens based on fractal metamaterials. Scientific reports, 6(1):35929, 2016.
  17. 3d printed fractal metamaterials with tunable mechanical properties and shape reconfiguration. Advanced Functional Materials, 33(1):2208849, 2023.
  18. Fractal plasmonic metamaterials: physics and applications. Nanotechnology Reviews, 4(3):277–288, 2015.
  19. J. P. Gianvittorio and Y. Rahmat-Samii. Fractal antennas: A novel antenna miniaturization technique, and applications. IEEE Antennas and Propagation magazine, 44(1):20–36, 2002.
  20. A. Karmakar. Fractal antennas and arrays: A review and recent developments. International Journal of Microwave and Wireless Technologies, 13(2):173–197, 2021.
  21. Discovery of superconductivity in quasicrystal. Nat. Commun., 9(1):1–8, 2018.
  22. Topological photonic quasicrystals: fractal topological spectrum and protected transport. Physical Review X, 6(1):011016, 2016.
  23. Fractal surface states in three-dimensional topological quasicrystals. arXiv preprint arXiv:2401.11497, 2024.
  24. Energy spectra, wave functions, and quantum diffusion for quasiperiodic systems. Physical Review B, 62(23):15569, 2000.
  25. Bronze-mean hexagonal quasicrystal. Nature Mater., 16(10):987–992, 2017.
  26. K. Niizeki. A dodecagonal quasiperiodic tiling with a fractal window. Philosophical Magazine, 87(18-21):2855–2861, 2007.
  27. S. Thiem and M. Schreiber. Wavefunctions, quantum diffusion, and scaling exponents in golden-mean quasiperiodic tilings. Journal of Physics: Condensed Matter, 25(7):075503, 2013.
  28. G. Rauzy. Nombres algébriques et substitutions. Bulletin de la Société mathématique de France, 110:147–178, 1982.
  29. On the fractal nature of penrose tiling. Current Science, 79(3):365–366, 2000.
  30. A. Jagannathan. The fibonacci quasicrystal: Case study of hidden dimensions and multifractality. Reviews of Modern Physics, 93(4):045001, 2021.
  31. Fractal dimensions of wave functions and local spectral measures on the Fibonacci chain. Phys. Rev. B, 93:205153, May 2016.
  32. A. Lindenmayer. Mathematical models for cellular interactions in development i. filaments with one-sided inputs. Journal of theoretical biology, 18(3):280–299, 1968.
  33. A. Monnerot-Dumaine. The fibonacci word fractal. 2009.
  34. A generalization of the fibonacci word fractal and the fibonacci snowflake. Theoretical Computer Science, 528:40–56, 2014.
  35. Metallic-mean quasicrystals as aperiodic approximants of periodic crystals. Nature Communications, 10(1):4235, 2019.
  36. Aperiodic approximants bridging quasicrystals and modulated structures. arXiv preprint arXiv:2403.16010, 2024.
  37. Rectangle-triangle soft-matter quasicrystals with hexagonal symmetry. Phys. Rev. E, 106:044602, 2022.
  38. On the conjugacy class of the fibonacci dynamical system. Theoretical Computer Science, 668:59–69, 2017.
  39. M. Saleh and M. Jahangiri. On linear ternary intersection sequences and their properties. arXiv preprint arXiv:1709.03829, 2017.
  40. OEIS Foundation Inc. The On-Line Encyclopedia of Integer Sequences, 2016. Published electronically at https://oeis.org/A267860.
  41. F. Hausdorff. Dimension und äußeres maß. Mathematische Annalen, 79(1):157–179, 1918.
  42. M. Senechal. Quasicrystals and geometry. Cambridge University Press, 1996.
  43. D. Hilbert and D. Hilbert. Über die stetige abbildung einer linie auf ein flächenstück. Dritter Band: Analysis· Grundlagen der Mathematik· Physik Verschiedenes: Nebst Einer Lebensgeschichte, pages 1–2, 1935.
  44. M. Gardner. Mathematical games. Scientific American, 237(3):24–45, 1977.
  45. S. Pautze et al. Space-filling, self-similar curves of regular pentagons, heptagons and other n-gons. In Bridges 2021 Conference Proceedings, pages 157–164. Tessellations Publishing, 2021.
  46. Hamiltonian cycles on ammann-beenker tilings. arXiv preprint arXiv:2302.01940, 2023.
  47. Classical dimers on Penrose tilings. Physical Review X, 10(1):011005, 2020.
  48. Statistical mechanics of dimers on quasiperiodic Ammann-Beenker tilings. Physical Review B, 106(9):094202, 2022.
  49. S. Coates. Hexagonal quasiperiodic tilings as decorations of periodic lattices. arXiv preprint arXiv:2404.11378, 2024.
  50. N. G. de Bruijn. Algebraic theory of Penrose’s non-periodic tilings of the plane (Parts I & II). Proc. Kon. Ned. Akad. Wet. Ser. A, 84:39–66, 1981. (Indag. Mathem., 43).
  51. N. G. De Bruijn. Dualization of multigrids. J. Phys. Colloques, 47:C3–9, 1986.
  52. M. Sierpiński. Sur une courbe dont tout point est un point de ramification. Compte Rendus hebdomadaires des seance de l’Academie des Science de Paris, 160:302–305, 1915.
  53. H. Koch. Sur une courbe continue sans tangente, obtenue par une construction géométrique élémentaire. Arkiv for Matematik, Astronomi och Fysik, 1:681–704, 1904.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com
Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 3 likes.

Upgrade to Pro to view all of the tweets about this paper: