Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 57 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 176 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Grey-box Recursive Parameter Identification of a Nonlinear Dynamic Model for Mineral Flotation (2405.04275v1)

Published 7 May 2024 in eess.SY and cs.SY

Abstract: This study presents a grey-box recursive identification technique to estimate key parameters in a mineral flotation process across two scenarios. The method is applied to a nonlinear physics-based dynamic model validated at a laboratory scale, allowing real-time updates of two model parameters, n and C, in response to changing conditions. The proposed approach effectively adapts to process variability and allows for continuous adjustments based on operational fluctuations, resulting in a significantly improved estimation of concentrate grade - one key performance indicator. In Scenario 1, parameters n and C achieved fit metrics of 97.99 and 96.86, respectively, with concentrate grade estimations improving from 75.1 to 98.69 using recursive identification. In Scenario 2, the fit metrics for n and C were 96.27 and 95.48, respectively, with the concentrate grade estimations increasing from 96.27 to 99.45 with recursive identification. The results demonstrate the effectiveness of the proposed grey-box recursive identification method in accurately estimating parameters and predicting concentrate grade in a mineral flotation process.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (18)
  1. M. Runge, K. Flaßkamp, and C. Büskens, “Model predictive control with online nonlinear parameter identification for a robotic system,” in 2020 7th International Conference on Control, Decision and Information Technologies (CoDIT), vol. 1, pp. 312–318, 2020.
  2. P. Quintanilla, S. J. Neethling, D. Navia, and P. R. Brito-Parada, “A dynamic flotation model for predictive control incorporating froth physics. Part I: Model development,” Minerals Engineering, vol. 173, p. 107192, 2021.
  3. P. Quintanilla, S. J. Neethling, D. Mesa, D. Navia, and P. R. Brito-Parada, “A dynamic flotation model for predictive control incorporating froth physics. part ii: Model calibration and validation,” Minerals Engineering, vol. 173, p. 107190, 2021.
  4. P. Quintanilla, D. Navia, S. J. Neethling, and P. R. Brito-Parada, “Economic model predictive control for a rougher froth flotation cell using physics-based models,” Minerals Engineering, vol. 196, p. 108050, 5 2023.
  5. L. Ljung and T. Söderström, Theory and Practice of Recursive Identification. MIT press, 1983.
  6. C. Pan, Y. Xi, and Y. Hu, “Grey-box parameter identification for drive-train system of large-scale wind turbine,” in 2019 Chinese Control Conference (CCC), pp. 1512–1519, IEEE, 2019.
  7. T. Wigren, “Recursive prediction error identification using the nonlinear wiener model,” Automatica, vol. 29, no. 4, pp. 1011–1025, 1993.
  8. P. C. Young, “Real-time updating in flood forecasting and warning,” Flood Risk Science and Management, pp. 163–195, 2010.
  9. T. P. Bohlin, Practical Grey-Box Process Identification: Theory and Applications. Springer Science & Business Media, 2006.
  10. D. Mesa, P. Quintanilla, and F. Reyes, “Bubble Analyser - An open-source software for bubble size measurement using image analysis,” Minerals Engineering, vol. 180, 2022.
  11. K. Hadler, C. D. Smith, and J. J. Cilliers, “Recovery vs. mass pull: The link to air recovery,” Minerals Engineering, vol. 23, no. 11-13, pp. 994–1002, 2010.
  12. S. J. Neethling, “Simple approximations for estimating froth recovery,” International Journal of Mineral Processing, vol. 89, no. 1-4, pp. 44–52, 2008.
  13. S. J. Neethling and P. R. Brito-Parada, “Predicting flotation behaviour – The interaction between froth stability and performance,” Minerals Engineering, vol. 120, pp. 60–65, 2018.
  14. S. J. Neethling and J. J. Cilliers, “The entrainment factor in froth flotation: Model for particle size and other operating parameter effects,” International Journal of Mineral Processing, vol. 93, pp. 141–148, 10 2009.
  15. S. J. Neethling and J. J. Cilliers, “Modelling flotation froths,” International Journal of Mineral Processing, vol. 72, no. 1-4, pp. 267–287, 2003.
  16. J. R. Magnus and H. Neudecker, Matrix Differential Calculus with Applications in Statistics and Econometrics. John Wiley & Sons, 2019.
  17. Cambridge University Press, 2012.
  18. Prentice-Hall, 1999.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.