Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 154 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 109 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

On left braces in which every subbrace is an ideal (2405.04213v2)

Published 7 May 2024 in math.GR and math.RA

Abstract: The aim of this paper is to introduce and study the class of all left braces in which every subbrace is an ideal. We call them Dedekind left braces. It is proved that every finite Dedekind left brace is centrally nilpotent. Structural results about Dedekind left braces and a complete description of those ones whose additive group is elementary abelian are also shown. As a consequence, every hypermultipermutational Dedekind left brace whose additive group is elementary abelian is multipermutational of level $2$. A new class of left braces, the extraspecial left braces, is introduced and plays a prominent role in our approach.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (29)
  1. R. Baer. Situation der Untergruppen und Struktur der Gruppe. S. B. Heidelberg. Akad. Wiss., 2:12–17, 1933.
  2. Central nilpotency of left skew braces and solutions of the Yang-Baxter equation. arXiv:2310.07474, October 2023.
  3. A Jordan-Hölder theorem for skew left braces and their applications to multipermutation solutions of the Yang-Baxter equation. Proc. Roy. Soc. Edinburgh Sect. A, pages 1–17, 2023. doi:10.1017/prm.2023.37.
  4. Soluble skew left braces and solutions of the Yang-Baxter equations. arXiv:2304.13475, 2023.
  5. M. Bonatto and P. Jedlička. Central nilpotency of skew braces. J. Algebra Appl., 22(12):2350255, 2023.
  6. Skew left braces with non-trivial annihilator. J. Algebra Appl., 18(2):1950033, 2019.
  7. F. Cedó. Left braces: solutions of the Yang-Baxter equation. Adv. Group Theory Appl., 5:33–90, 2018.
  8. Braces and the Yang-Baxter equation. Adv. Math., 224(6):2472–2484, 2010.
  9. Braces and the Yang-Baxter equation. Commun. Math. Phys., 327:101–116, 2014.
  10. F. Cedó and J. Okniński. Constructing finite simple solutions of the Yang-Baxter equation. Adv. Math., 391:107968, 39 pp., 2021.
  11. Skew left braces of nilpotent type. Proc. London Math. Soc., 118(6):1367–1392, 2019.
  12. R. Dedekind. Über Gruppen, deren sámtliche Teiler Normalteiler sind. Math. Ann., 48:548–561, 1897.
  13. V. G. Drinfeld. On some unsolved problems in quantum group theory. In P. P. Kulish, editor, Quantum groups. Proceedings of workshops held in the Euler International Mathematical Institute, Leningrad, fall 1990, volume 1510 of Lecture Notes in Mathematics, pages 1–8. Springer-Verlag, Berlin, 1992.
  14. Set theoretical solutions to the quantum Yang-Baxter equation. Duke Math. J., 100:169–209, 1999.
  15. The GAP Group. GAP – Groups, Algorithms, and Programming, Version 4.12.2, 2022. http://www.gap-system.org.
  16. T. Gateva-Ivanova. A combinatorial approach to the set-theoretic solutions of the Yang-Baxter equation. J. Math. Phys., 45:3828–3858, 2004.
  17. T. Gateva-Ivanova. Set-theoretic solutions of the Yang-Baxter equation, braces and symmetric groups. Adv. Math., 338:649–701, 2018.
  18. T. Gateva-Ivanova and P. Cameron. Multipermutation solutions of the Yang-Baxter equation. Comm. Math. Phys., 309(3):583–621, 2012.
  19. T. Gateva-Ivanova and S. Majid. Quantum spaces associated to multipermutation solutions of level two. Algebr. Represent. Theor., 14:341–376, 2011.
  20. Indecomposable involutive solutions of the Yang-Baxter equation of multipermutational level 2 with abelian permutation group. Forum Mathematicum, 33(5):1083–1096, 2021.
  21. Indecomposable involutive solutions of the Yang-Baxter equation of multipermutation level 2 with non-abelian permutation group. Journal of Combinatorial Theory, Series A, 197:105753, 2023.
  22. Nilpotency of skew braces and multipermutation solutions of the Yang–Baxter equation. Commun. Contemp. Math., 2022. doi:10.1142/S021919972250064X.
  23. R. Lidl and H. Niederreiter. Finite fields, volume 20 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, 1997.
  24. On the set-theoretical Yang-Baxter equation. Duke Math. J., 104(1):1–18, 2000.
  25. W. Rump. Braces, radical rings, and the quantum Yang-Baxter equation. J. Algebra, 307:153–170, 2007.
  26. W. Rump. Classification of non-degenerate involutive set-theoretic solutions to the Yang-Baxter equation with multipermutation level two. Algebr. Represent. Theor., 25:1293–1307, 2022.
  27. R. Schmidt. Subgroup lattices of groups, volume 14 of De Gruyter Expositions in Mathematics. Walter de Gruyter, Berlin, 1994.
  28. A. Smoktunowicz. On Engel groups, nilpotent groups, rings, braces and Yang-Baxter equation. Trans. Amer. Math. Soc., in press.
  29. L. Vendramin and O. Konovalov. YangBaxter: combinatorial solutions for the Yang-Baxter equation, December 2022. version 0.10.2, https://gap-packages.github.io/YangBaxter/.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com
Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 2 likes.

Upgrade to Pro to view all of the tweets about this paper: