Atmospheric cooling of freshwater near the temperature of maximum density (2405.03700v1)
Abstract: We perform three-dimensional direct numerical simulations of surface-driven convection near the temperature of maximum density $\tilde T_{md}$. A dynamic surface boundary condition couples heat flux through the surface to the induced convection, creating a dynamic equilibrium between the surface water temperature and the convection below. In this system, we identified three convective regimes: (1) free convection when the surface water temperature is above $\tilde T_{md}$, (2) penetrative convection when the surface water temperature is below $\tilde T_{md}$ and the convection is actively mixing the fluid layer, and (3) decaying convection when the convection weakens. We then predict the transitions between these regimes. Understanding these transitions is essential for the predicting timing of ice formation in natural systems.
- Heat transport in turbulent Rayleigh-Bénard convection: Effect of finite top- and bottom-plate conductivities. Physics of Fluids, 17(7):075108, July 2005. ISSN 1070-6631, 1089-7666. doi: 10.1063/1.1964987. URL http://aip.scitation.org/doi/10.1063/1.1964987.
- Ultimate regime in Rayleigh–Bénard convection: The role of plates. Physics of Fluids, 16(7):2452–2456, July 2004. ISSN 1070-6631, 1089-7666. doi: 10.1063/1.1751396. URL http://aip.scitation.org/doi/10.1063/1.1751396.
- The effects of a Robin boundary condition on thermal convection in a rotating spherical shell. Journal of Fluid Mechanics, 918:A36, July 2021. ISSN 0022-1120, 1469-7645. doi: 10.1017/jfm.2021.356. URL https://www.cambridge.org/core/product/identifier/S0022112021003566/type/journal_article.
- J. Hitchen and A. J. Wells. The impact of imperfect heat transfer on the convective instability of a thermal boundary layer in a porous media. Journal of Fluid Mechanics, 794:154–174, May 2016. ISSN 0022-1120, 1469-7645. doi: 10.1017/jfm.2016.149. URL https://www.cambridge.org/core/product/identifier/S002211201600149X/type/journal_article.
- J. Olsthoorn. Accounting for surface temperature variations in Rayleigh-Bénard convection. Physical Review Fluids, 8(3):033501, Mar. 2023. ISSN 2469-990X. doi: 10.1103/PhysRevFluids.8.033501. URL https://link.aps.org/doi/10.1103/PhysRevFluids.8.033501.
- The cooling box problem: convection with a quadratic equation of state. Journal of Fluid Mechanics, 918:A6, July 2021. ISSN 0022-1120, 1469-7645. doi: 10.1017/jfm.2021.319. URL https://www.cambridge.org/core/product/identifier/S0022112021003190/type/journal_article.
- M. Plumley and K. Julien. Scaling Laws in Rayleigh‐Bénard Convection. Earth and Space Science, 6(9):1580–1592, Sept. 2019. ISSN 2333-5084, 2333-5084. doi: 10.1029/2019EA000583. URL https://onlinelibrary.wiley.com/doi/abs/10.1029/2019EA000583.
- Simulation of the Navier–Stokes equations in three dimensions with a spectral collocation method. International Journal for Numerical Methods in Fluids, 73(2):103–129, Sept. 2013. ISSN 0271-2091, 1097-0363. doi: 10.1002/fld.3788. URL https://onlinelibrary.wiley.com/doi/10.1002/fld.3788.
- R. Verzicco. Effects of nonperfect thermal sources in turbulent thermal convection. Physics of Fluids, 16(6):1965–1979, June 2004. ISSN 1070-6631, 1089-7666. doi: 10.1063/1.1723463. URL http://aip.scitation.org/doi/10.1063/1.1723463.
- Penetrative turbulent Rayleigh–Bénard convection in two and three dimensions. Journal of Fluid Mechanics, 870:718–734, July 2019. ISSN 0022-1120, 1469-7645. doi: 10.1017/jfm.2019.286. URL https://www.cambridge.org/core/product/identifier/S0022112019002866/type/journal_article.
- Universal properties of penetrative turbulent Rayleigh-Bénard convection. Physical Review Fluids, 6(6):063502, June 2021a. ISSN 2469-990X. doi: 10.1103/PhysRevFluids.6.063502. URL https://link.aps.org/doi/10.1103/PhysRevFluids.6.063502.
- How the growth of ice depends on the fluid dynamics underneath. Proceedings of the National Academy of Sciences, 118(10):e2012870118, Mar. 2021b. doi: 10.1073/pnas.2012870118. URL https://www.pnas.org/doi/full/10.1073/pnas.2012870118. Publisher: Proceedings of the National Academy of Sciences.
- R. W. Wittenberg. Bounds on Rayleigh–Bénard convection with imperfectly conducting plates. Journal of Fluid Mechanics, 665:158–198, Dec. 2010. ISSN 0022-1120, 1469-7645. doi: 10.1017/S0022112010003897. URL https://www.cambridge.org/core/product/identifier/S0022112010003897/type/journal_article.
- Mixing, stratification, and plankton under lake‐ice during winter in a large lake: Implications for spring dissolved oxygen levels. Limnology and Oceanography, 65(11):2713–2729, Nov. 2020. ISSN 0024-3590, 1939-5590. doi: 10.1002/lno.11543. URL https://onlinelibrary.wiley.com/doi/10.1002/lno.11543.
- A New Thermal Categorization of Ice‐Covered Lakes. Geophysical Research Letters, 48(3), Feb. 2021. ISSN 0094-8276, 1944-8007. doi: 10.1029/2020GL091374. URL https://onlinelibrary.wiley.com/doi/10.1029/2020GL091374.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.