Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Motion Planning under Uncertainty: Integrating Learning-Based Multi-Modal Predictors into Branch Model Predictive Control (2405.03470v1)

Published 6 May 2024 in cs.RO, cs.SY, and eess.SY

Abstract: In complex traffic environments, autonomous vehicles face multi-modal uncertainty about other agents' future behavior. To address this, recent advancements in learningbased motion predictors output multi-modal predictions. We present our novel framework that leverages Branch Model Predictive Control(BMPC) to account for these predictions. The framework includes an online scenario-selection process guided by topology and collision risk criteria. This efficiently selects a minimal set of predictions, rendering the BMPC realtime capable. Additionally, we introduce an adaptive decision postponing strategy that delays the planner's commitment to a single scenario until the uncertainty is resolved. Our comprehensive evaluations in traffic intersection and random highway merging scenarios demonstrate enhanced comfort and safety through our method.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (23)
  1. C. Hubmann, J. Schulz, M. Becker, D. Althoff, and C. Stiller, “Automated Driving in Uncertain Environments: Planning With Interaction and Uncertain Maneuver Prediction,” IEEE Transactions on Intelligent Vehicles, vol. 3, no. 1, pp. 5–17, Mar. 2018.
  2. A. Somani, N. Ye, D. Hsu, and W. S. Lee, “DESPOT: Online POMDP Planning with Regularization,” in Advances in Neural Information Processing Systems, vol. 26.   Curran Associates, Inc., 2013.
  3. G. Schildbach, M. Soppert, and F. Borrelli, “A collision avoidance system at intersections using Robust Model Predictive Control,” in 2016 IEEE Intelligent Vehicles Symposium (IV), Jun. 2016, pp. 233–238.
  4. S. Dixit, U. Montanaro, M. Dianati, D. Oxtoby, T. Mizutani, A. Mouzakitis, and S. Fallah, “Trajectory planning for autonomous high-speed overtaking in structured environments using robust mpc,” IEEE Transactions on Intelligent Transportation Systems, vol. 21, no. 6, pp. 2310–2323, 2020.
  5. T. Benciolini, T. Brudigam, and M. Leibold, “Multistage Stochastic Model Predictive Control for Urban Automated Driving,” in 2021 IEEE International Intelligent Transportation Systems Conference (ITSC).   Indianapolis, IN, USA: IEEE, Sep. 2021, pp. 417–423.
  6. T. Brudigam, M. Olbrich, M. Leibold, and D. Wollherr, “Combining Stochastic and Scenario Model Predictive Control to Handle Target Vehicle Uncertainty in an Autonomous Driving Highway Scenario,” in 2018 21st International Conference on Intelligent Transportation Systems (ITSC).   Maui, HI: IEEE, Nov. 2018, pp. 1317–1324.
  7. R. Kensbock, M. Nezami, and G. Schildbach, “Scenario-Based Decision-Making, Planning and Control for Interaction-Aware Autonomous Driving on Highways,” in 2023 IEEE Intelligent Vehicles Symposium (IV), Jun. 2023, pp. 1–6, iSSN: 2642-7214.
  8. O. de Groot, B. Brito, L. Ferranti, D. Gavrila, and J. Alonso-Mora, “Scenario-Based Trajectory Optimization in Uncertain Dynamic Environments,” IEEE Robotics and Automation Letters, vol. 6, no. 3, pp. 5389–5396, 2021.
  9. R. Oliveira, S. H. Nair, and B. Wahlberg, “Interaction and decision making-aware motion planning using branch model predictive control,” in 2023 IEEE Intelligent Vehicles Symposium (IV), 2023.
  10. Y. Chen, U. Rosolia, W. Ubellacker, N. Csomay-Shanklin, and A. D. Ames, “Interactive multi-modal motion planning with branch model predictive control,” IEEE Robotics and Automation Letters, vol. 7, no. 2, pp. 5365–5372, 2022.
  11. J. P. Alsterda, M. Brown, and J. C. Gerdes, “Contingency Model Predictive Control for Automated Vehicles,” in 2019 American Control Conference (ACC).   Philadelphia, PA, USA: IEEE, Jul. 2019, p. 717.
  12. V. Fors, B. Olofsson, and E. Frisk, “Resilient Branching MPC for Multi-Vehicle Traffic Scenarios Using Adversarial Disturbance Sequences,” IEEE Transactions on Intelligent Vehicles, vol. 7, no. 4, Dec. 2022.
  13. C. H. Ulfsjoo and D. Axehill, “On Integrating POMDP and Scenario MPC for Planning under Uncertainty – with Applications to Highway Driving,” in 2022 IEEE Intelligent Vehicles Symposium (IV).   Aachen, Germany: IEEE, Jun. 2022, pp. 1152–1160.
  14. Ö. Ş. Taş, P. H. Brusius, and C. Stiller, “Decision-theoretic MPC: Motion Planning with Weighted Maneuver Preferences Under Uncertainty,” Oct. 2023, arXiv:2310.17963 [cs, math] version: 1.
  15. S. Shi, L. Jiang, D. Dai, and B. Schiele, “Motion transformer with global intention localization and local movement refinement,” Advances in Neural Information Processing Systems, vol. 35, pp. 6531–6543, 2022.
  16. N. Nayakanti, R. Al-Rfou, A. Zhou, K. Goel, K. S. Refaat, and B. Sapp, “Wayformer: Motion Forecasting via Simple & Efficient Attention Networks,” arXiv preprint arXiv:2207.05844, 2022.
  17. Z. Zhou, J. Wang, Y. Li, and Y. Huang, “Query-centric trajectory prediction,” in 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2023, pp. 17 863–17 873.
  18. B. Brito, B. Floor, L. Ferranti, and J. Alonso-Mora, “Model Predictive Contouring Control for Collision Avoidance in Unstructured Dynamic Environments,” IEEE Robotics and Automation Letters, vol. 4, no. 4, pp. 4459–4466, 2019.
  19. F. Siebenrock, M. Günther, and S. Hohmann, “LTV-MPC Based Trajectory Planning Considering Uncertain Object Prediction Through Adaptive Potential Fields,” in 2020 IEEE Conference on Control Technology and Applications (CCTA).   IEEE, 2020, pp. 666–672.
  20. F. Altché, P. Polack, and A. de La Fortelle, “High-speed trajectory planning for autonomous vehicles using a simple dynamic model,” in 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC), 2017, pp. 1–7.
  21. O. de Groot, L. Ferranti, D. Gavrila, and J. Alonso–Mora, “Globally guided trajectory planning in dynamic environments,” in 2023 IEEE International Conference on Robotics and Automation (ICRA), 2023, pp. 10 118–10 124.
  22. A. Philipp and D. Goehring, “Analytic Collision Risk Calculation for Autonomous Vehicle Navigation,” in 2019 International Conference on Robotics and Automation (ICRA).   Montreal, QC, Canada: IEEE, May 2019, pp. 1744–1750.
  23. A. Bhattacharyya, “On a measure of divergence between two multinomial populations,” Sankhyā: The Indian Journal of Statistics (1933-1960), vol. 7, no. 4, pp. 401–406, 1946.

Summary

We haven't generated a summary for this paper yet.