On the categoricity of complete second order theories (2405.03428v1)
Abstract: We show, assuming PD, that every complete finitely axiomatized second order theory with a countable model is categorical, but that there is, assuming again PD, a complete recursively axiomatized second order theory with a countable model which is non-categorical. We show that the existence of even very large (e.g. supercompact) cardinals does not imply the categoricity of all finite complete second order theories. More exactly, we show that a non-categorical complete finitely axiomatized second order theory can always be obtained by (set) forcing. We also show that the categoricity of all finite complete second order theories with a model of a certain singular cardinality kappa of uncountable cofinality can be forced over any model of set theory. Previously, Solovay had proved, assuming V=L, that every complete finitely axiomatized second order theory (with or without a countable model) is categorical, and that in a generic extension of L there is a complete finitely axiomatized second order theory with a countable model which is non-categorical.
- Miklós Ajtai. Isomorphism and higher order equivalence. Annals of Mathematical Logic, 1979.
- Large cardinals and locally defined well-orders of the universe. Ann. Pure Appl. Logic, 157(1):1–15, 2009.
- Definable well-orders of H(ω2)𝐻subscript𝜔2H(\omega_{2})italic_H ( italic_ω start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) and GCH. J. Symbolic Logic, 77(4):1101–1121, 2012.
- Martin’s Maximum++ implies Woodin’s axiom (∗)(*)( ∗ ). Ann. of Math. (2), 193(3):793–835, 2021.
- Completeness and categoricity. I. Nineteenth-century axiomatics to twentieth-century metalogic. Hist. Philos. Logic, 23(1):1–30, 2002.
- Rudolf Carnap. Untersuchungen zur allgemeinen Axiomatik. Wissenschaftliche Buchgesellschaft, Darmstadt, 2000. Edited and with a foreword by Thomas Bonk and Jesus Mosterin.
- M. Foreman and A. Kanamori. Handbook of Set Theory. Springer Netherlands, 2009.
- Abraham Fraenkel. Einleitung in die Mengenlehre. 3. Aufl., volume 9. Springer, Berlin, 1928.
- Roland Fraïssé. Sur les types de polyrelations et sur une hypothèse d’origine logistique. C. R. Acad. Sci. Paris, 230:1557–1559, 1950.
- Roland Fraïssé. Sur la signification d’une hypothèse de la théorie des relations, du point de vue du calcul logique. C. R. Acad. Sci. Paris, 232:1793–1795, 1951.
- Classifying inaccessible cardinals. Notices of the American mathematical Society, 8:445, 1961.
- Akihiro Kanamori. The higher infinite : large cardinals in set theory from their beginnings. Springer monographs in mathematics. Springer, Berlin ;, 2nd ed. edition, 2003.
- Forcing a countable structure to belong to the ground model. MLQ Math. Log. Q., 62(6):530–546, 2016.
- Eugene M. Kleinberg. Infinitary combinatorics and the axiom of determinateness, volume Vol. 612 of Lecture Notes in Mathematics. Springer-Verlag, Berlin-New York, 1977.
- Kenneth Kunen. Elementary embeddings and infinitary combinatorics. J. Symbolic Logic, 36:407–413, 1971.
- M. C. Laskowski and S. Shelah. On the existence of atomic models. J. Symbolic Logic, 58(4):1189–1194, 1993.
- Alain Louveau. Borel sets and the analytical hierarchy. In Proceedings of the Herbrand symposium (Marseilles, 1981), volume 107 of Stud. Logic Found. Math., pages 209–215. North-Holland, Amsterdam, 1982.
- Wiktor Marek. Consistance d’une hypothèse de Fraïssé sur la définissabilité dans un langage du second ordre. C. R. Acad. Sci. Paris Sér. A-B, 276:A1147–A1150, 1973.
- Wiktor Marek. Sur la consistance d’une hypothèse de Fraïssé sur la définissabilité dans un langage du second ordre. C. R. Acad. Sci. Paris Sér. A-B, 276:A1169–A1172, 1973.
- Donald A. Martin. The axiom of determinateness and reduction principles in the analytical hierarchy. Bull. Amer. Math. Soc., 74:687–689, 1968.
- Telis K. Menas. Consistency results concerning supercompactness. Trans. Amer. Math. Soc., 223:61–91, 1976.
- Yiannis N. Moschovakis. Descriptive set theory, volume 155 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, second edition, 2009.
- Michael O. Rabin. A simple method for undecidability proofs and some applications. In Logic, Methodology and Philos. Sci. (Proc. 1964 Internat. Congr.), pages 58–68. North-Holland, Amsterdam, 1965.
- Mitch Rudominer. The mouse set theorem just past projective. Journal of Mathematical Logic, 0(0):2450014, 0.
- Saharon Shelah. Set theory without choice: not everything on cofinality is possible. Arch. Math. Logic, 36(2):81–125, 1997.
- Robert Solovay. FOM posting, 2006. http://cs.nyu.edu/pipermail/fom/2006-May/010561.html.
- John R. Steel. Scales in L(𝐑)𝐿𝐑L({\bf R})italic_L ( bold_R ). In Cabal seminar 79–81, volume 1019 of Lecture Notes in Math., pages 107–156. Springer, Berlin, 1983.
- W. Hugh Woodin. The axiom of determinacy, forcing axioms, and the nonstationary ideal, volume 1 of De Gruyter Series in Logic and its Applications. Walter de Gruyter GmbH & Co. KG, Berlin, revised edition, 2010.
- W. Hugh Woodin. Suitable extender models II: beyond ω𝜔\omegaitalic_ω-huge. J. Math. Log., 11(2):115–436, 2011.
- W. Hugh Woodin. In search of Ultimate-L𝐿Litalic_L: the 19th Midrasha Mathematicae Lectures. Bull. Symb. Log., 23(1):1–109, 2017.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.