Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 41 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

On the categoricity of complete second order theories (2405.03428v1)

Published 6 May 2024 in math.LO

Abstract: We show, assuming PD, that every complete finitely axiomatized second order theory with a countable model is categorical, but that there is, assuming again PD, a complete recursively axiomatized second order theory with a countable model which is non-categorical. We show that the existence of even very large (e.g. supercompact) cardinals does not imply the categoricity of all finite complete second order theories. More exactly, we show that a non-categorical complete finitely axiomatized second order theory can always be obtained by (set) forcing. We also show that the categoricity of all finite complete second order theories with a model of a certain singular cardinality kappa of uncountable cofinality can be forced over any model of set theory. Previously, Solovay had proved, assuming V=L, that every complete finitely axiomatized second order theory (with or without a countable model) is categorical, and that in a generic extension of L there is a complete finitely axiomatized second order theory with a countable model which is non-categorical.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (30)
  1. Miklós Ajtai. Isomorphism and higher order equivalence. Annals of Mathematical Logic, 1979.
  2. Large cardinals and locally defined well-orders of the universe. Ann. Pure Appl. Logic, 157(1):1–15, 2009.
  3. Definable well-orders of H⁢(ω2)𝐻subscript𝜔2H(\omega_{2})italic_H ( italic_ω start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) and GCH. J. Symbolic Logic, 77(4):1101–1121, 2012.
  4. Martin’s Maximum++ implies Woodin’s axiom (∗)(*)( ∗ ). Ann. of Math. (2), 193(3):793–835, 2021.
  5. Completeness and categoricity. I. Nineteenth-century axiomatics to twentieth-century metalogic. Hist. Philos. Logic, 23(1):1–30, 2002.
  6. Rudolf Carnap. Untersuchungen zur allgemeinen Axiomatik. Wissenschaftliche Buchgesellschaft, Darmstadt, 2000. Edited and with a foreword by Thomas Bonk and Jesus Mosterin.
  7. M. Foreman and A. Kanamori. Handbook of Set Theory. Springer Netherlands, 2009.
  8. Abraham Fraenkel. Einleitung in die Mengenlehre. 3. Aufl., volume 9. Springer, Berlin, 1928.
  9. Roland Fraïssé. Sur les types de polyrelations et sur une hypothèse d’origine logistique. C. R. Acad. Sci. Paris, 230:1557–1559, 1950.
  10. Roland Fraïssé. Sur la signification d’une hypothèse de la théorie des relations, du point de vue du calcul logique. C. R. Acad. Sci. Paris, 232:1793–1795, 1951.
  11. Classifying inaccessible cardinals. Notices of the American mathematical Society, 8:445, 1961.
  12. Akihiro Kanamori. The higher infinite : large cardinals in set theory from their beginnings. Springer monographs in mathematics. Springer, Berlin ;, 2nd ed. edition, 2003.
  13. Forcing a countable structure to belong to the ground model. MLQ Math. Log. Q., 62(6):530–546, 2016.
  14. Eugene M. Kleinberg. Infinitary combinatorics and the axiom of determinateness, volume Vol. 612 of Lecture Notes in Mathematics. Springer-Verlag, Berlin-New York, 1977.
  15. Kenneth Kunen. Elementary embeddings and infinitary combinatorics. J. Symbolic Logic, 36:407–413, 1971.
  16. M. C. Laskowski and S. Shelah. On the existence of atomic models. J. Symbolic Logic, 58(4):1189–1194, 1993.
  17. Alain Louveau. Borel sets and the analytical hierarchy. In Proceedings of the Herbrand symposium (Marseilles, 1981), volume 107 of Stud. Logic Found. Math., pages 209–215. North-Holland, Amsterdam, 1982.
  18. Wiktor Marek. Consistance d’une hypothèse de Fraïssé sur la définissabilité dans un langage du second ordre. C. R. Acad. Sci. Paris Sér. A-B, 276:A1147–A1150, 1973.
  19. Wiktor Marek. Sur la consistance d’une hypothèse de Fraïssé sur la définissabilité dans un langage du second ordre. C. R. Acad. Sci. Paris Sér. A-B, 276:A1169–A1172, 1973.
  20. Donald A. Martin. The axiom of determinateness and reduction principles in the analytical hierarchy. Bull. Amer. Math. Soc., 74:687–689, 1968.
  21. Telis K. Menas. Consistency results concerning supercompactness. Trans. Amer. Math. Soc., 223:61–91, 1976.
  22. Yiannis N. Moschovakis. Descriptive set theory, volume 155 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, second edition, 2009.
  23. Michael O. Rabin. A simple method for undecidability proofs and some applications. In Logic, Methodology and Philos. Sci. (Proc. 1964 Internat. Congr.), pages 58–68. North-Holland, Amsterdam, 1965.
  24. Mitch Rudominer. The mouse set theorem just past projective. Journal of Mathematical Logic, 0(0):2450014, 0.
  25. Saharon Shelah. Set theory without choice: not everything on cofinality is possible. Arch. Math. Logic, 36(2):81–125, 1997.
  26. Robert Solovay. FOM posting, 2006. http://cs.nyu.edu/pipermail/fom/2006-May/010561.html.
  27. John R. Steel. Scales in L⁢(𝐑)𝐿𝐑L({\bf R})italic_L ( bold_R ). In Cabal seminar 79–81, volume 1019 of Lecture Notes in Math., pages 107–156. Springer, Berlin, 1983.
  28. W. Hugh Woodin. The axiom of determinacy, forcing axioms, and the nonstationary ideal, volume 1 of De Gruyter Series in Logic and its Applications. Walter de Gruyter GmbH & Co. KG, Berlin, revised edition, 2010.
  29. W. Hugh Woodin. Suitable extender models II: beyond ω𝜔\omegaitalic_ω-huge. J. Math. Log., 11(2):115–436, 2011.
  30. W. Hugh Woodin. In search of Ultimate-L𝐿Litalic_L: the 19th Midrasha Mathematicae Lectures. Bull. Symb. Log., 23(1):1–109, 2017.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 10 likes.

Upgrade to Pro to view all of the tweets about this paper: