Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 34 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 130 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Implantable Adaptive Cells: A Novel Enhancement for Pre-Trained U-Nets in Medical Image Segmentation (2405.03420v2)

Published 6 May 2024 in cs.CV

Abstract: This paper introduces a novel approach to enhance the performance of pre-trained neural networks in medical image segmentation using gradient-based Neural Architecture Search (NAS) methods. We present the concept of Implantable Adaptive Cell (IAC), small modules identified through Partially-Connected DARTS based approach, designed to be injected into the skip connections of an existing and already trained U-shaped model. Unlike traditional NAS methods, our approach refines existing architectures without full retraining. Experiments on four medical datasets with MRI and CT images show consistent accuracy improvements on various U-Net configurations, with segmentation accuracy gain by approximately 5 percentage points across all validation datasets, with improvements reaching up to 11\%pt in the best-performing cases. The findings of this study not only offer a cost-effective alternative to the complete overhaul of complex models for performance upgrades but also indicate the potential applicability of our method to other architectures and problem domains.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (35)
  1. doi:10.3390/s23031713.
  2. doi:10.1109/CVPR.2019.00017.
  3. doi:10.1109/CVPR46437.2021.01374.
  4. doi:10.1109/TPAMI.2021.3052758.
  5. doi:10.1007/978-3-030-00919-9\_12.
  6. doi:10.1109/ACCESS.2019.2908991.
  7. doi:10.1007/978-3-030-32245-8\_26.
  8. doi:10.1109/3DV.2019.00035.
  9. doi:10.1109/CVPR46437.2021.00578.
  10. doi:10.1109/CVPR52688.2022.02008.
  11. arXiv:1909.06035.
  12. arXiv:2201.11679.
  13. doi:10.1109/ICCVW54120.2021.00046.
  14. doi:10.1007/978-3-319-24574-4\_28.
  15. arXiv:1804.03999.
  16. doi:10.1007/978-3-030-36711-4\_13.
  17. doi:10.1109/TMI.2019.2959609.
  18. arXiv:1904.08128.
  19. doi:10.1007/978-3-319-46723-8\_49.
  20. arXiv:1902.09063.
  21. arXiv:1611.01578.
  22. arXiv:1708.05344.
  23. arXiv:1802.03268.
  24. arXiv:2001.00326.
  25. doi:10.1109/ICCV.2019.00138.
  26. doi:https://doi.org/10.1016/j.patcog.2021.108025.
  27. doi:https://doi.org/10.1016/j.patcog.2021.108186.
  28. doi:10.1109/CVPR42600.2020.00418.
  29. doi:10.1038/s41467-022-30695-9.
  30. doi:10.1109/CVPR.2016.90.
  31. doi:10.1109/TMI.2014.2377694.
  32. doi:10.7937/K9/TCIA.2017.KLXWJJ1Q.
  33. arXiv:2305.09011.
  34. arXiv:1903.09900.
  35. doi:10.1109/CVPR52688.2022.01060.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.