Implantable Adaptive Cells: A Novel Enhancement for Pre-Trained U-Nets in Medical Image Segmentation (2405.03420v2)
Abstract: This paper introduces a novel approach to enhance the performance of pre-trained neural networks in medical image segmentation using gradient-based Neural Architecture Search (NAS) methods. We present the concept of Implantable Adaptive Cell (IAC), small modules identified through Partially-Connected DARTS based approach, designed to be injected into the skip connections of an existing and already trained U-shaped model. Unlike traditional NAS methods, our approach refines existing architectures without full retraining. Experiments on four medical datasets with MRI and CT images show consistent accuracy improvements on various U-Net configurations, with segmentation accuracy gain by approximately 5 percentage points across all validation datasets, with improvements reaching up to 11\%pt in the best-performing cases. The findings of this study not only offer a cost-effective alternative to the complete overhaul of complex models for performance upgrades but also indicate the potential applicability of our method to other architectures and problem domains.
- doi:10.3390/s23031713.
- doi:10.1109/CVPR.2019.00017.
- doi:10.1109/CVPR46437.2021.01374.
- doi:10.1109/TPAMI.2021.3052758.
- doi:10.1007/978-3-030-00919-9\_12.
- doi:10.1109/ACCESS.2019.2908991.
- doi:10.1007/978-3-030-32245-8\_26.
- doi:10.1109/3DV.2019.00035.
- doi:10.1109/CVPR46437.2021.00578.
- doi:10.1109/CVPR52688.2022.02008.
- arXiv:1909.06035.
- arXiv:2201.11679.
- doi:10.1109/ICCVW54120.2021.00046.
- doi:10.1007/978-3-319-24574-4\_28.
- arXiv:1804.03999.
- doi:10.1007/978-3-030-36711-4\_13.
- doi:10.1109/TMI.2019.2959609.
- arXiv:1904.08128.
- doi:10.1007/978-3-319-46723-8\_49.
- arXiv:1902.09063.
- arXiv:1611.01578.
- arXiv:1708.05344.
- arXiv:1802.03268.
- arXiv:2001.00326.
- doi:10.1109/ICCV.2019.00138.
- doi:https://doi.org/10.1016/j.patcog.2021.108025.
- doi:https://doi.org/10.1016/j.patcog.2021.108186.
- doi:10.1109/CVPR42600.2020.00418.
- doi:10.1038/s41467-022-30695-9.
- doi:10.1109/CVPR.2016.90.
- doi:10.1109/TMI.2014.2377694.
- doi:10.7937/K9/TCIA.2017.KLXWJJ1Q.
- arXiv:2305.09011.
- arXiv:1903.09900.
- doi:10.1109/CVPR52688.2022.01060.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.