Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 104 tok/s
Gemini 3.0 Pro 36 tok/s Pro
Gemini 2.5 Flash 133 tok/s Pro
Kimi K2 216 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

QuadraNet V2: Efficient and Sustainable Training of High-Order Neural Networks with Quadratic Adaptation (2405.03192v2)

Published 6 May 2024 in cs.LG and cs.AI

Abstract: Machine learning is evolving towards high-order models that necessitate pre-training on extensive datasets, a process associated with significant overheads. Traditional models, despite having pre-trained weights, are becoming obsolete due to architectural differences that obstruct the effective transfer and initialization of these weights. To address these challenges, we introduce a novel framework, QuadraNet V2, which leverages quadratic neural networks to create efficient and sustainable high-order learning models. Our method initializes the primary term of the quadratic neuron using a standard neural network, while the quadratic term is employed to adaptively enhance the learning of data non-linearity or shifts. This integration of pre-trained primary terms with quadratic terms, which possess advanced modeling capabilities, significantly augments the information characterization capacity of the high-order network. By utilizing existing pre-trained weights, QuadraNet V2 reduces the required GPU hours for training by 90\% to 98.4\% compared to training from scratch, demonstrating both efficiency and effectiveness.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.