2000 character limit reached
On homogeneous holomorphic conformal structures (2405.02527v1)
Published 4 May 2024 in math.DG
Abstract: We study compact complex manifolds $M$ admitting a conformal holomorphic Riemannian structure invariant under the action of a complex semi-simple Lie group $G$. We prove that if the group $G$ acts transitively and essentially, then $M$ is conformally flat.
- I. Agricola. Old and new on the exceptional group G2subscript𝐺2G_{2}italic_G start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT. Notices Amer. Math. Soc., 55(8):922–929, 2008.
- G. D. Ambra and M. Gromov. Lectures on transformation groups: geometry and dynamics. Surveys in differential geometry, 1:19–111, 1990.
- U. Bader and A. Nevo. Conformal actions of simple Lie groups on compact pseudo-Riemannian manifolds. J. Differential Geom., 60(3):355–387, 2002.
- Pseudo-conformal actions of the mobius group. Differential Geometry and its Applications, 91:102070, 2023.
- I. Biswas and S. Dumitrescu. Holomorphic Riemannian metric and the fundamental group. Bull. Soc. Math. France, 147(3):455–468, 2019.
- A. Borel. Groupes lineaires algebriques. Annals of Mathematics, 64(1):20–82, 1956.
- S. Dumitrescu and A. Zeghib. Global rigidity of holomorphic Riemannian metrics on compact complex 3-manifolds. Math. Ann., 345(1):53–81, 2009.
- C. Frances. About pseudo-Riemannian Lichnerowicz conjecture. Transform. Groups, 20(4):1015–1022, 2015.
- C. Frances and K. Melnick. Formes normales pour les champs conformes pseudo-riemanniens. Bull. Soc. Math. France, 141(3):377–421, 2013.
- C. Frances and A. Zeghib. Some remarks on conformal pseudo-Riemannian actions of simple Lie groups. Math. Res. Lett., 12(1):49–56, 2005.
- J. Gasqui and H. Goldschmidt. On the geometry of the complex quadric. Hokkaido Math. J., 20(2):279–312, 1991.
- J. Gasqui and H. Goldschmidt. The infinitesimal rigidity of the complex quadric of dimension four. Amer. J. Math., 116(3):501–539, 1994.
- Holomorphic affine connections on compact complex surfaces. J. Fac. Sci. Univ. Tokyo Sect. IA Math., 27(2):247–264, 1980.
- S. Klein. The complex quadric from the standpoint of Riemannian geometry. PhD thesis, Universität zu Köln, 2005.
- S. Klein. Totally geodesic submanifolds of the complex quadric. Differential Geom. Appl., 26(1):79–96, 2008.
- A. W. Knapp. Lie groups beyond an introduction, volume 140 of Progress in Mathematics. Birkhäuser Boston, Inc., Boston, MA, 1996.
- S. Kobayashi and K. Nomizu. Foundations of differential geometry. Vol. II, volume Vol. II of Interscience Tracts in Pure and Applied Mathematics, No. 15. Interscience Publishers John Wiley & Sons, Inc., New York-London-Sydney, 1969.
- K. Melnick and V. Pecastaing. The conformal group of a compact simply connected Lorentzian manifold. J. Amer. Math. Soc., 35(1):81–122, 2022.
- E. Musso and L. Nicolodi. Conformal geometry of isotropic curves in the complex quadric. Internat. J. Math., 33(8):Paper No. 2250054, 32, 2022.
- V. Pecastaing. Essential conformal actions of PSL(2,ℝ)PSL2ℝ\rm{PSL}(2,\mathbb{R})roman_PSL ( 2 , blackboard_R ) on real-analytic compact Lorentz manifolds. Geom. Dedicata, 188:171–194, 2017.
- V. Pecastaing. Conformal actions of real-rank 1 simple Lie groups on pseudo-Riemannian manifolds. Transform. Groups, 24(4):1213–1239, 2019.
- V. Pecastaing. Conformal actions of higher rank lattices on compact pseudo-Riemannian manifolds. Geom. Funct. Anal., 30(3):955–987, 2020.
- J.-P. Serre. Complex semisimple Lie algebras. Springer-Verlag, New York, 1987. Translated from the French by G. A. Jones.
- R. J. Zimmer. Split rank and semisimple automorphism groups of G𝐺Gitalic_G-structures. J. Differential Geom., 26(1):169–173, 1987.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.