Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 131 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 79 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Internet of Paint (IoP): Channel Modeling and Capacity Analysis for Terahertz Electromagnetic Nanonetworks Embedded in Paint (2405.02436v1)

Published 3 May 2024 in physics.app-ph and cs.ET

Abstract: This work opens a new chapter in the 100,000 year-old concept of paint, by leveraging innovations in nano-technology in the sub-THz frequency range. More specifically, the groundbreaking concept of Internet of Paint (IoP) is introduced along with a comprehensive channel model and a capacity analysis for nano-scale radios embedded in paint and communicating through paint. Nano-network devices, integrated within a paint medium, communicate via a multipath strategy, encompassing direct waves, reflections from interfaces, and lateral wave propagation. The evaluation incorporates three distinct paint types to assess path losses, received powers, and channel capacity. Analysis of path loss indicates a slight non-linear increase with both frequency and Line of Sight (LoS) distance between transceivers. Notably, paints with high refractive indexes result in the highest path loss. Moreover, burying transceivers at similar depths near the Air-Paint interface showcases promising performance of lateral waves with increasing LoS distance. Increasing paint layer depth leads to amplified attenuation, while total received power exhibits promising results when in close proximity to the Air-Paint interface but steeply declines with burial depth. Additionally, a substantial reduction in channel capacity is observed with LoS distance and burial depth, so transceivers need to be close together and in proximity of the A-P interface to communicate effectively. Comparing paint and air mediums, IoP demonstrates approximately two orders of magnitude reduction in channel capacity compared to air-based communication channels. This paper provides valuable insights into the potential of IoP communication within paint mediums and offers a foundation for further advancements in this emerging field.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (50)
  1. F. Lemic, S. Abadal, W. Tavernier, P. Stroobant, D. Colle, E. Alarcón, J. Marquez-Barja, and J. Famaey, “Survey on terahertz nanocommunication and networking: A top-down perspective,” IEEE Journal on Selected Areas in Communications, vol. 39, no. 6, pp. 1506–1543, 2021.
  2. I. Llatser, S. Abadal, A. M. Sugranes, A. Cabellos-Aparicio, and E. Alarcón, “Graphene-enabled wireless networks-on-chip,” in 2013 First International Black Sea Conference on Communications and Networking (BlackSeaCom).   IEEE, 2013, pp. 69–73.
  3. H. Elayan, R. M. Shubair, J. M. Jornet, and P. Johari, “Terahertz channel model and link budget analysis for intrabody nanoscale communication,” IEEE transactions on nanobioscience, vol. 16, no. 6, pp. 491–503, 2017.
  4. A. Vizziello, M. Magarini, P. Savazzi, and L. Galluccio, “Intra-body communications for nervous system applications: Current technologies and future directions,” Computer Networks, vol. 227, p. 109718, 2023.
  5. J. M. Jornet and A. Sangwan, “Nanonetworking in the terahertz band and beyond,” IEEE Nanotechnology Magazine, 2023.
  6. L. T. Wedage, B. Butler, S. Balasubramaniam, Y. Koucheryavy, J. M. Jornet, and M. C. Vuran, “Climate change sensing through terahertz communication infrastructure: A disruptive application of 6G networks,” IEEE Network, pp. 1–1, 2023.
  7. F. Sizov and A. Rogalski, “Thz detectors,” Progress in quantum electronics, vol. 34, no. 5, pp. 278–347, 2010.
  8. S. Kianoush, S. Savazzi, and V. Rampa, “Passive detection and discrimination of body movements in the sub-thz band: A case study,” in ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).   IEEE, 2019, pp. 1597–1601.
  9. J. Dai, X. Lu, J. Liu, I. Ho, N. Karpowicz, and X. Zhang, “Remote thz wave sensing in ambient atmosphere,” Science, vol. 2, pp. 131–143, 2009.
  10. A. Sample, C. Yang, and Y. Zhang, “Room-scale interactive and context-aware sensing,” Jul. 16 2019, uS Patent 10,353,526.
  11. S. Pappa, “Oldest human paint-making studio discovered in cave,” Live Science, 2011.
  12. I. Sample, “Stone age painting kits found in cave [online]. uk: Guardian newspaper,” 2011.
  13. P. Cencillo-Abad, D. Franklin, P. Mastranzo-Ortega, J. Sanchez-Mondragon, and D. Chanda, “Ultralight plasmonic structural color paint,” Science Advances, vol. 9, no. 10, p. eadf7207, 2023.
  14. J. T. Gómez, J. Simonjan, J. M. Jornet, and F. Dressler, “Optimizing terahertz communication between nanosensors in the human cardiovascular system and external gateways,” IEEE Communications Letters, 2023.
  15. I. V. K. Reddy, S. Elmaadawy, E. P. Furlani, and J. M. Jornet, “Photothermal effects of terahertz-band and optical electromagnetic radiation on human tissues,” Scientific Reports, vol. 13, no. 1, p. 14643, 2023.
  16. X. Timoneda, S. Abadal, A. Cabellos-Aparicio, D. Manessis, J. Zhou, A. Franques, J. Torrellas, and E. Alarcón, “Millimeter-wave propagation within a computer chip package,” in 2018 IEEE International Symposium on Circuits and Systems (ISCAS).   IEEE, 2018, pp. 1–5.
  17. S. Abadal, A. Marruedo, A. Franques, H. Taghvaee, A. Cabellos-Aparicio, J. Zhou, J. Torrellas, and E. Alarcón, “Opportunistic beamforming in wireless network-on-chip,” in 2019 IEEE International Symposium on Circuits and Systems (ISCAS).   IEEE, 2019, pp. 1–5.
  18. S. Abadal, C. Han, and J. M. Jornet, “Wave propagation and channel modeling in chip-scale wireless communications: A survey from millimeter-wave to terahertz and optics,” IEEE access, vol. 8, pp. 278–293, 2019.
  19. M. C. Vuran, A. Salam, R. Wong, and S. Irmak, “Internet of underground things in precision agriculture: Architecture and technology aspects,” Ad Hoc Networks, vol. 81, pp. 160–173, 2018.
  20. V. Dworak, B. Mahns, J. Selbeck, R. Gebbers, and C. Weltzien, “Terahertz spectroscopy for proximal soil sensing: An approach to particle size analysis,” Sensors, vol. 17, no. 10, p. 2387, 2017.
  21. H. Kaushal and G. Kaddoum, “Underwater optical wireless communication,” IEEE access, vol. 4, pp. 1518–1547, 2016.
  22. L. T. Wedage, B. Butler, S. Balasubramaniam, Y. Koucheryavy, and M. C. Vuran, “Comparative analysis of terahertz propagation under dust storm conditions on mars and earth,” IEEE Journal of Selected Topics in Signal Processing, pp. 1–16, 2023.
  23. Z. Hossain, C. N. Mollica, J. F. Federici, and J. M. Jornet, “Stochastic interference modeling and experimental validation for pulse-based terahertz communication,” IEEE Transactions on Wireless Communications, vol. 18, no. 8, pp. 4103–4115, 2019.
  24. Y. Monnai, X. Lu, and K. Sengupta, “Terahertz beam steering: from fundamentals to applications,” Journal of Infrared, Millimeter, and Terahertz Waves, vol. 44, no. 3-4, pp. 169–211, 2023.
  25. Z. L. Wang, “Towards self-powered nanosystems: from nanogenerators to nanopiezotronics,” Advanced Functional Materials, vol. 18, no. 22, pp. 3553–3567, 2008.
  26. S. Xu, B. J. Hansen, and Z. L. Wang, “Piezoelectric-nanowire-enabled power source for driving wireless microelectronics,” Nature communications, vol. 1, no. 1, p. 93, 2010.
  27. D. Seo, R. M. Neely, K. Shen, U. Singhal, E. Alon, J. M. Rabaey, J. M. Carmena, and M. M. Maharbiz, “Wireless recording in the peripheral nervous system with ultrasonic neural dust,” Neuron, vol. 91, no. 3, pp. 529–539, 2016.
  28. M. A. K. Khan, M. I. Ullah, R. Kabir, and M. A. Alim, “High-performance graphene patch antenna with superstrate cover for terahertz band application,” Plasmonics, vol. 15, pp. 1719–1727, 2020.
  29. A. Salam and M. C. Vuran, “Smart underground antenna arrays: A soil moisture adaptive beamforming approach,” in IEEE INFOCOM 2017-IEEE conference on computer communications.   IEEE, 2017, pp. 1–9.
  30. J. M. Jornet and I. F. Akyildiz, “Channel modeling and capacity analysis for electromagnetic wireless nanonetworks in the terahertz band,” IEEE Transactions on Wireless Communications, vol. 10, no. 10, pp. 3211–3221, 2011.
  31. M. A. Akkaş, I. F. Akyildiz, and R. Sokullu, “Terahertz channel modeling of underground sensor networks in oil reservoirs,” in 2012 IEEE Global Communications Conference (GLOBECOM).   IEEE, 2012, pp. 543–548.
  32. C. Jansen, R. Piesiewicz, D. Mittleman, T. Kurner, and M. Koch, “The impact of reflections from stratified building materials on the wave propagation in future indoor terahertz communication systems,” IEEE Transactions on Antennas and Propagation, vol. 56, no. 5, pp. 1413–1419, 2008.
  33. A. Salam, M. C. Vuran, and S. Irmak, “A statistical impulse response model based on empirical characterization of wireless underground channels,” IEEE Transactions on Wireless Communications, vol. 19, no. 9, pp. 5966–5981, 2020.
  34. C. Han, A. O. Bicen, and I. F. Akyildiz, “Multi-ray channel modeling and wideband characterization for wireless communications in the terahertz band,” IEEE Transactions on Wireless Communications, vol. 14, no. 5, pp. 2402–2412, 2014.
  35. K. Tsujimura, K. Umebayashi, J. Kokkoniemi, J. Lehtomäki, and Y. Suzuki, “A causal channel model for the terahertz band,” IEEE Transactions on Terahertz Science and Technology, vol. 8, no. 1, pp. 52–62, 2017.
  36. R. Piesiewicz, C. Jansen, D. Mittleman, T. Kleine-Ostmann, M. Koch, and T. Kurner, “Scattering analysis for the modeling of thz communication systems,” IEEE Transactions on Antennas and Propagation, vol. 55, no. 11, pp. 3002–3009, 2007.
  37. J. W. Clough, “Electromagnetic lateral waves observed by earth sounding radars,” Geophysics, vol. 41, no. 6A, pp. 1126–1132, Dec 1976.
  38. T. T. Wu and R. W. P. King, “Lateral waves: A new formula and interference patterns,” Radio Science, vol. 17, no. 3, pp. 521–531, May-June 1982.
  39. E. Ginzel, F. Honarvar, and A. Yaghootian, “A study of time-of-flight diffraction technique using photoelastic visualisations,” in Int. Conf. Technical Inspection and NDT, Oct 2008.
  40. D. Dence and T. Tamir, “Radio loss of lateral waves in forest environments,” Radio Science, vol. 4, no. 4, pp. 307–318, April 1969.
  41. I. Gordon et al., “The HITRAN2016 Molecular Spectroscopic Database,” Journal of Quantitative Spectroscopy and Radiative Transfer, vol. 203, pp. 3–69, Dec. 2017.
  42. L. T. Wedage, B. Butler, S. Balasubramaniam, M. C. Vuran, and Y. Koucheryavy, “Path loss analysis of terahertz communication in mars’ atmospheric conditions,” in 2022 IEEE International Conference on Communications Workshops (ICC Workshops), 2022, pp. 1225–1230.
  43. Z. Diao, Q. Jing, and W. Zhong, “Comparison of the influence of martian and earth’s atmospheric environments on terahertz band electromagnetic waves,” International Journal of Communication Systems, vol. 34, no. 12, p. e4894, 2021.
  44. X. Dong and M. C. Vuran, “A channel model for wireless underground sensor networks using lateral waves,” in 2011 IEEE Global Telecommunications Conference-GLOBECOM 2011.   IEEE, 2011, pp. 1–6.
  45. J. M. Jornet and I. F. Akyildiz, “Channel capacity of electromagnetic nanonetworks in the terahertz band,” in 2010 IEEE international conference on communications.   IEEE, 2010, pp. 1–6.
  46. M. R. Da Costa, O. Kibis, and M. Portnoi, “Carbon nanotubes as a basis for terahertz emitters and detectors,” Microelectronics Journal, vol. 40, no. 4-5, pp. 776–778, 2009.
  47. M. Wabia, “Lateral waves in anisotropic optical waveguides,” Acta Physica Polonica A, vol. 81, no. 4-5, pp. 503–516, 1992.
  48. E. Abraham, A. Younus, J.-C. Delagnes, and P. Mounaix, “Non-invasive investigation of art paintings by terahertz imaging,” Applied Physics A, vol. 100, pp. 585–590, 2010.
  49. T. Otoshi, R. Cirillo Jr, and J. Sosnowski, “Measurements of complex dielectric constants of paints and primers for dsn antennas: Part i,” TMO Progress Rep, pp. 42–138, 1999.
  50. I. F. Akyildiz, H. Guo, R. Dai, and W. Gerstacker, “Mulsemedia communication research challenges for metaverse in 6G wireless systems,” ITU Journal on Future and Evolving Technologies, 2023.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We found no open problems mentioned in this paper.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 4 tweets and received 24 likes.

Upgrade to Pro to view all of the tweets about this paper: