Papers
Topics
Authors
Recent
2000 character limit reached

Fast and Accurate Algorithm for Calculating Long-Baseline Neutrino Oscillation Probabilities with Matter Effects: NuFast

Published 3 May 2024 in hep-ph and hep-ex | (2405.02400v1)

Abstract: Neutrino oscillation experiments will be entering the precision era in the next decade with the advent of high statistics experiments like DUNE, HK, and JUNO. Correctly estimating the confidence intervals from data for the oscillation parameters requires very large Monte Carlo data sets involving calculating the oscillation probabilities in matter many, many times. In this paper, we leverage past work to present a new, fast, precise technique for calculating neutrino oscillation probabilities in matter optimized for long-baseline neutrino oscillations in the Earth's crust including both accelerator and reactor experiments. For ease of use by theorists and experimentalists, we provide fast c++ and fortran codes.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (28)
  1. D. Ayres et al. (NOvA),  (2004), arXiv:hep-ex/0503053 .
  2. Y. Itow et al. (T2K), in 3rd Workshop on Neutrino Oscillations and Their Origin (NOON 2001) (2001) pp. 239–248, arXiv:hep-ex/0106019 .
  3. B. Abi et al. (DUNE),  (2020), arXiv:2002.03005 [hep-ex] .
  4. K. Abe et al. (Hyper-Kamiokande),   (2018), arXiv:1805.04163 [physics.ins-det] .
  5. A. Abusleme et al. (JUNO), Prog. Part. Nucl. Phys. 123, 103927 (2022), arXiv:2104.02565 [hep-ex] .
  6. G. J. Feldman and R. D. Cousins, Phys. Rev. D 57, 3873 (1998), arXiv:physics/9711021 .
  7. NOvA collaboration, private communication, .
  8. M. Teckenbrock, “Fermilab computing experts bolster NOvA evidence, 1 million cores consumed,” .
  9. P. B. Denton and S. J. Parke, Phys. Rev. D 98, 093001 (2018), arXiv:1808.09453 [hep-ph] .
  10. P. B. Denton and S. J. Parke, Phys. Rev. D 109, 053002 (2024), arXiv:2401.10326 [hep-ph] .
  11. L. Wolfenstein, Phys. Rev. D 17, 2369 (1978).
  12. B. Pontecorvo, Sov. Phys. JETP 6, 429 (1957).
  13. P. B. Denton and R. Pestes, JHEP 05, 139 (2021), arXiv:2006.09384 [hep-ph] .
  14. R. L. Workman et al. (Particle Data Group), PTEP 2022, 083C01 (2022).
  15. C. Jarlskog, Phys. Rev. Lett. 55, 1039 (1985).
  16. G. Cardano, Ars Magna (1545).
  17. H. W. Zaglauer and K. H. Schwarzer, Z. Phys. C 40, 273 (1988).
  18. H. Minakata and S. J. Parke, JHEP 01, 180 (2016), arXiv:1505.01826 [hep-ph] .
  19. S. Parke, Phys. Rev. D 93, 053008 (2016), arXiv:1601.07464 [hep-ph] .
  20. A. M. Abdullahi and S. J. Parke,   (2022), arXiv:2212.12565 [hep-ph] .
  21. V. A. Naumov, Int. J. Mod. Phys. D 1, 379 (1992).
  22. P. F. Harrison and W. G. Scott, Phys. Lett. B 535, 229 (2002), arXiv:hep-ph/0203021 .
  23. R. Mammen Abraham et al., J. Phys. G 49, 110501 (2022), arXiv:2203.05591 [hep-ph] .
  24. J. Page, Comput. Phys. Commun. 300, 109200 (2024), arXiv:2309.06900 [hep-ph] .
  25. M. Maltoni, JHEP 11, 033 (2023), arXiv:2308.00037 [hep-ph] .
  26. J. Kopp, Int. J. Mod. Phys. C 19, 523 (2008), arXiv:physics/0610206 .
  27. T. E. Gonzalo and M. Lucente, Eur. Phys. J. C 84, 119 (2024), arXiv:2303.15527 [hep-ph] .
  28. S. J. Parke, Phys. Rev. D 103, 033003 (2021), arXiv:2012.07186 [hep-ph] .

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.