Fast and Accurate Algorithm for Calculating Long-Baseline Neutrino Oscillation Probabilities with Matter Effects: NuFast (2405.02400v1)
Abstract: Neutrino oscillation experiments will be entering the precision era in the next decade with the advent of high statistics experiments like DUNE, HK, and JUNO. Correctly estimating the confidence intervals from data for the oscillation parameters requires very large Monte Carlo data sets involving calculating the oscillation probabilities in matter many, many times. In this paper, we leverage past work to present a new, fast, precise technique for calculating neutrino oscillation probabilities in matter optimized for long-baseline neutrino oscillations in the Earth's crust including both accelerator and reactor experiments. For ease of use by theorists and experimentalists, we provide fast c++ and fortran codes.
- D. Ayres et al. (NOvA), (2004), arXiv:hep-ex/0503053 .
- Y. Itow et al. (T2K), in 3rd Workshop on Neutrino Oscillations and Their Origin (NOON 2001) (2001) pp. 239–248, arXiv:hep-ex/0106019 .
- B. Abi et al. (DUNE), (2020), arXiv:2002.03005 [hep-ex] .
- K. Abe et al. (Hyper-Kamiokande), (2018), arXiv:1805.04163 [physics.ins-det] .
- A. Abusleme et al. (JUNO), Prog. Part. Nucl. Phys. 123, 103927 (2022), arXiv:2104.02565 [hep-ex] .
- G. J. Feldman and R. D. Cousins, Phys. Rev. D 57, 3873 (1998), arXiv:physics/9711021 .
- NOvA collaboration, private communication, .
- M. Teckenbrock, “Fermilab computing experts bolster NOvA evidence, 1 million cores consumed,” .
- P. B. Denton and S. J. Parke, Phys. Rev. D 98, 093001 (2018), arXiv:1808.09453 [hep-ph] .
- P. B. Denton and S. J. Parke, Phys. Rev. D 109, 053002 (2024), arXiv:2401.10326 [hep-ph] .
- L. Wolfenstein, Phys. Rev. D 17, 2369 (1978).
- B. Pontecorvo, Sov. Phys. JETP 6, 429 (1957).
- P. B. Denton and R. Pestes, JHEP 05, 139 (2021), arXiv:2006.09384 [hep-ph] .
- R. L. Workman et al. (Particle Data Group), PTEP 2022, 083C01 (2022).
- C. Jarlskog, Phys. Rev. Lett. 55, 1039 (1985).
- G. Cardano, Ars Magna (1545).
- H. W. Zaglauer and K. H. Schwarzer, Z. Phys. C 40, 273 (1988).
- H. Minakata and S. J. Parke, JHEP 01, 180 (2016), arXiv:1505.01826 [hep-ph] .
- S. Parke, Phys. Rev. D 93, 053008 (2016), arXiv:1601.07464 [hep-ph] .
- A. M. Abdullahi and S. J. Parke, (2022), arXiv:2212.12565 [hep-ph] .
- V. A. Naumov, Int. J. Mod. Phys. D 1, 379 (1992).
- P. F. Harrison and W. G. Scott, Phys. Lett. B 535, 229 (2002), arXiv:hep-ph/0203021 .
- R. Mammen Abraham et al., J. Phys. G 49, 110501 (2022), arXiv:2203.05591 [hep-ph] .
- J. Page, Comput. Phys. Commun. 300, 109200 (2024), arXiv:2309.06900 [hep-ph] .
- M. Maltoni, JHEP 11, 033 (2023), arXiv:2308.00037 [hep-ph] .
- J. Kopp, Int. J. Mod. Phys. C 19, 523 (2008), arXiv:physics/0610206 .
- T. E. Gonzalo and M. Lucente, Eur. Phys. J. C 84, 119 (2024), arXiv:2303.15527 [hep-ph] .
- S. J. Parke, Phys. Rev. D 103, 033003 (2021), arXiv:2012.07186 [hep-ph] .
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.