Gravothermal Catastrophe in Resonant Self-interacting Dark Matter Models (2405.02388v3)
Abstract: We investigate a self-interacting dark matter (SIDM) model featuring a velocity-dependent cross section with an order-of-magnitude resonant enhancement of the cross section at $\sim 16\,{\rm km}\,{\rm s}{-1}$. To understand the implications for the structure of dark matter halos, we perform N-body simulations of isolated dark matter halos of mass $\sim 108\,{\rm M}_\odot$, a halo mass selected to have a maximum response to the resonance. We track the core formation and the gravothermal collapse phases of the dark matter halo in this model and compare the halo evolving with the resonant cross section with halos evolving with velocity-independent cross sections. We show that dark matter halo evolution with the resonant cross section exhibits a deviation from universality that characterizes halo evolution with velocity-independent cross sections. The halo evolving under the influence of the resonance reaches a lower minimum central density during core formation. It subsequently takes about $20\%$ longer to reach its initial central density during the collapse phase. These results motivate a more detailed exploration of halo evolution in models with pronounced resonances.
- M. R. Buckley and A. H. G. Peter, Gravitational probes of dark matter physics, Phys. Rep. 761, 1 (2018), arXiv:1712.06615 [astro-ph.CO] .
- E. D. Carlson, M. E. Machacek, and L. J. Hall, Self-interacting Dark Matter, ApJ 398, 43 (1992).
- A. A. de Laix, R. J. Scherrer, and R. K. Schaefer, Constraints on Self-interacting Dark Matter, ApJ 452, 495 (1995), arXiv:astro-ph/9502087 [astro-ph] .
- D. N. Spergel and P. J. Steinhardt, Observational Evidence for Self-Interacting Cold Dark Matter, Phys. Rev. Lett. 84, 3760 (2000), arXiv:astro-ph/9909386 [astro-ph] .
- S. Tulin, H.-B. Yu, and K. M. Zurek, Beyond collisionless dark matter: Particle physics dynamics for dark matter halo structure, Phys. Rev. D 87, 115007 (2013), arXiv:1302.3898 [hep-ph] .
- M. Vogelsberger, J. Zavala, and A. Loeb, Subhaloes in self-interacting galactic dark matter haloes, MNRAS 423, 3740 (2012), arXiv:1201.5892 [astro-ph.CO] .
- J. F. Navarro, C. S. Frenk, and S. D. M. White, A Universal Density Profile from Hierarchical Clustering, ApJ 490, 493 (1997), arXiv:astro-ph/9611107 [astro-ph] .
- J. Zavala, M. Vogelsberger, and M. G. Walker, Constraining self-interacting dark matter with the Milky way’s dwarf spheroidals., MNRAS 431, L20 (2013), arXiv:1211.6426 [astro-ph.CO] .
- D. Lynden-Bell, R. Wood, and A. Royal, The Gravo-Thermal Catastrophe in Isothermal Spheres and the Onset of Red-Giant Structure for Stellar Systems, Monthly Notices of the Royal Astronomical Society 138, 495 (1968).
- S. Balberg, S. L. Shapiro, and S. Inagaki, Self-Interacting Dark Matter Halos and the Gravothermal Catastrophe, ApJ 568, 475 (2002), arXiv:astro-ph/0110561 [astro-ph] .
- J. Koda and P. R. Shapiro, Gravothermal collapse of isolated self-interacting dark matter haloes: N-body simulation versus the fluid model, MNRAS 415, 1125 (2011), arXiv:1101.3097 [astro-ph.CO] .
- D. Yang and H.-B. Yu, Self-interacting dark matter and small-scale gravitational lenses in galaxy clusters, Physical Review D 104, 103031 (2021).
- D. Yang and H.-B. Yu, Gravothermal evolution of dark matter halos with differential elastic scattering, Journal of Cosmology and Astroparticle Physics 2022 (09), 077.
- E. O. Nadler, D. Yang, and H.-B. Yu, A Self-interacting Dark Matter Solution to the Extreme Diversity of Low-mass Halo Properties, ApJ 958, L39 (2023), arXiv:2306.01830 [astro-ph.GA] .
- H. Nishikawa, K. K. Boddy, and M. Kaplinghat, Accelerated core collapse in tidally stripped self-interacting dark matter halos, Phys. Rev. D 101, 063009 (2020), arXiv:1901.00499 [astro-ph.GA] .
- W.-X. Feng, H.-B. Yu, and Y.-M. Zhong, Seeding Supermassive Black Holes with Self-interacting Dark Matter: A Unified Scenario with Baryons, ApJ 914, L26 (2021), arXiv:2010.15132 [astro-ph.CO] .
- M. Kaplinghat, S. Tulin, and H.-B. Yu, Dark Matter Halos as Particle Colliders: Unified Solution to Small-Scale Structure Puzzles from Dwarfs to Clusters, Phys. Rev. Lett. 116, 041302 (2016), arXiv:1508.03339 [astro-ph.CO] .
- S. Tulin and H.-B. Yu, Dark matter self-interactions and small scale structure, Phys. Rep. 730, 1 (2018), arXiv:1705.02358 [hep-ph] .
- N. Shah and S. Adhikari, The abundance of core-collapsed subhaloes in SIDM: insights from structure formation in ΛΛ\Lambdaroman_ΛCDM, MNRAS 529, 4611 (2024), arXiv:2308.16342 [astro-ph.CO] .
- D. Gilman, Y.-M. Zhong, and J. Bovy, Constraining resonant dark matter self-interactions with strong gravitational lenses, Phys. Rev. D 107, 103008 (2023), arXiv:2207.13111 [astro-ph.CO] .
- C. A. Correa, Constraining velocity-dependent self-interacting dark matter with the Milky Way’s dwarf spheroidal galaxies, MNRAS 503, 920 (2021), arXiv:2007.02958 [astro-ph.GA] .
- X. Chu, C. Garcia-Cely, and H. Murayama, A practical and consistent parametrization of dark matter self-interactions, J. Cosmol. Astropart. Phys. 2020, 043 (2020), arXiv:1908.06067 [hep-ph] .
- A. Kamada and H. J. Kim, Evolution of resonant self-interacting dark matter halos, Phys. Rev. D 109, 063535 (2024), arXiv:2304.12621 [astro-ph.CO] .
- Y.-M. Zhong, D. Yang, and H.-B. Yu, The impact of baryonic potentials on the gravothermal evolution of self-interacting dark matter haloes, MNRAS 526, 758 (2023), arXiv:2306.08028 [astro-ph.CO] .
- B. Diemer and M. Joyce, An Accurate Physical Model for Halo Concentrations, ApJ 871, 168 (2019), arXiv:1809.07326 [astro-ph.CO] .
- J. Binney and S. Tremaine, Galactic dynamics (1987).
- R. Weinberger, V. Springel, and R. Pakmor, The AREPO Public Code Release, ApJS 248, 32 (2020), arXiv:1909.04667 [astro-ph.IM] .
- V. Springel and S. D. M. White, Tidal tails in cold dark matter cosmologies, MNRAS 307, 162 (1999), arXiv:astro-ph/9807320 [astro-ph] .
- S. Kazantzidis, J. Magorrian, and B. Moore, Generating Equilibrium Dark Matter Halos: Inadequacies of the Local Maxwellian Approximation, ApJ 601, 37 (2004), arXiv:astro-ph/0309517 [astro-ph] .
- The value of rcsubscript𝑟cr_{\rm c}italic_r start_POSTSUBSCRIPT roman_c end_POSTSUBSCRIPT is chosen to reduce statistical uncertainties while keeping the region small enough to represent the halo central density.
- V. Springel, E pur si muove: Galilean-invariant cosmological hydrodynamical simulations on a moving mesh, MNRAS 401, 791 (2010), arXiv:0901.4107 [astro-ph.CO] .
- A. S. Eddington, The distribution of stars in globular clusters, MNRAS 76, 572 (1916).
- E. L. Łokas and G. A. Mamon, Properties of spherical galaxies and clusters with an NFW density profile, MNRAS 321, 155 (2001), arXiv:astro-ph/0002395 [astro-ph] .
- D. Yang and H.-B. Yu, Gravothermal evolution of dark matter halos with differential elastic scattering, J. Cosmol. Astropart. Phys. 2022, 077 (2022), arXiv:2205.03392 [astro-ph.CO] .
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.