Edge-length preserving embeddings of graphs between normed spaces (2405.02189v1)
Abstract: The concept of graph flattenability, initially formalized by Belk and Connelly and later expanded by Sitharam and Willoughby, extends the question of embedding finite metric spaces into a given normed space. A finite simple graph $G=(V,E)$ is said to be $(X,Y)$-flattenable if any set of induced edge lengths from an embedding of $G$ into a normed space $Y$ can also be realised by an embedding of $G$ into a normed space $X$. This property, being minor-closed, can be characterized by a finite list of forbidden minors. Following the establishment of fundamental results about $(X,Y)$-flattenability, we identify sufficient conditions under which it implies independence with respect to the associated rigidity matroids for $X$ and $Y$. We show that the spaces $\ell_2$ and $\ell_\infty$ serve as two natural extreme spaces of flattenability and discuss $(X, \ell_p )$-flattenability for varying $p$. We provide a complete characterization of $(X,Y)$-flattenable graphs for the specific case when $X$ is 2-dimensional and $Y$ is infinite-dimensional.
- Embeddability of snowflaked metrics with applications to the nonlinear geometry of the spaces Lpsubscript𝐿𝑝L_{p}italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT and ℓpsubscriptℓ𝑝\ell_{p}roman_ℓ start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT for 0<p<∞0𝑝0<p<\infty0 < italic_p < ∞. Journal of Geometric Analysis, 25:1–24, 2015. doi:10.1007/s12220-013-9390-0.
- Some characteristic and non-characteristic properties of inner product spaces. Journal of Approximation Theory, 55(3):318–325, 1988. doi:10.1016/0021-9045(88)90098-6.
- Keith Ball. Isometric embedding in lpsubscript𝑙𝑝l_{p}italic_l start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT-spaces. European Journal of Combinatorics, 11(4):305–311, 1990. doi:10.1016/S0195-6698(13)80131-X.
- Realizability of graphs. Discrete and Computational Geometry, 37:125–137, 2007. doi:10.1007/s00454-006-1284-5.
- The rank theorem for locally Lipschitz continuous functions. Canadian Mathematical Bulletin, 31(2):217–226, 1988. doi:10.4153/CMB-1988-034-8.
- Frank H. Clarke. Optimization and Nonsmooth Analysis. Society for Industrial and Applied Mathematics, 1990. doi:10.1137/1.9781611971309.
- Reihard Diestel. Graph Theory: 5th edition. Graduate Texts in Mathematics. Springer-Verlag, 2017. doi:10.1007/978-3-662-53622-3.
- Euclidean distance matrices: Essential theory, algorithms, and applications. IEEE Signal Processing Magazine, 32(6):12–30, 2015. doi:10.1109/MSP.2015.2398954.
- Leonard E. Dor. Potentials and isometric embeddings in L1subscript𝐿1L_{1}italic_L start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT. Israel Journal of Mathematics, 24:260–268, 1976. doi:10.1007/BF02834756.
- Unavoidable minors for graphs with large ℓpsubscriptℓ𝑝\ell_{p}roman_ℓ start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT-dimension. Discrete and Computational Geometry, 66:301–343, 2021. doi:h10.1007/s00454-021-00285-5.
- The excluded minors for isometric realizability in the plane. SIAM Journal on Discrete Mathematics, 31(1):438–453, 2017. doi:10.1137/16M1064775.
- Maurice Fréchet. Les dimensions d’un ensemble abstrait. Mathematische Annalen, 68:145–168, 1910. doi:10.1007/BF01474158.
- Carl S. Herz. A class of negative-definite functions. Proceedings of the American Mathematical Society, 14(4):670–676, 1963. doi:10.2307/2034298.
- Włodzimierz Holsztynski. ℝnsuperscriptℝ𝑛\mathbb{R}^{n}blackboard_R start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT as a universal metric space. In Notices of the AMS, volume 25, 1978.
- Derek Kitson. Finite and infinitesimal rigidity with polyhedral norms. Discrete and Computational Geometry, 54:390–411, 2015. doi:10.1007/s00454-015-9706-x.
- Göte Nordlander. The modulus of convexity in normed linear spaces. Arkiv för Matematik, 4(1):15–17, 1960. doi:10.1007/BF02591317.
- Clinton M. Petty. Equilateral sets in Minkowski spaces. Proceedings of the American Mathematical Society, 29(2):369–374, 1971.
- Graph minors XIII. The disjoint paths problem. Journal of Combinatorial Theory, Series B, 63(1):65–110, 1995. doi:10.1006/jctb.1995.1006.
- Graph minors XX. Wagner’s conjecture. Journal of Combinatorial Theory, Series B, 92(2):325–357, 2004. doi:10.1016/j.jctb.2004.08.001.
- Ralph Tyrell Rockafellar. Convex Analysis. Princeton University Press, Princeton, 1970. doi:doi:10.1515/9781400873173.
- Bipartite coverings of graphs. Combinatorics, Probability and Computing, 6(3):349–352, 1997. doi:10.1017/S0963548397003064.
- Isaac J Schoenberg. Remarks to Maurice Fréchet’s article “sur la definition axiomatique d’une classe d’espace distances vectoriellement applicable sur l’espace de Hilbert”. Annals of Mathematics, pages 724–732, 1935. doi:10.2307/1968654.
- Stanislav A Shkarin. Isometric embedding of finite ultrametric spaces in Banach spaces. Topology and its Applications, 142(1):13–17, 2004. doi:10.1016/j.topol.2003.12.002.
- On flattenability of graphs. In Francisco Botana and Pedro Quaresma, editors, Automated Deduction in Geometry, pages 129–148, Cham, 2015. Springer International Publishing.
- Convex optimization in Julia. SC14 Workshop on High Performance Technical Computing in Dynamic Languages, 2014. arXiv:1410.4821.
- Hans S. Witsenhausen. Minimum dimension embedding of finite metric spaces. Journal of Combinatorial Theory, Series A, 42(2):184–199, 1986. doi:10.1016/0097-3165(86)90089-0.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.