Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 156 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

Edge-length preserving embeddings of graphs between normed spaces (2405.02189v1)

Published 3 May 2024 in math.MG and math.CO

Abstract: The concept of graph flattenability, initially formalized by Belk and Connelly and later expanded by Sitharam and Willoughby, extends the question of embedding finite metric spaces into a given normed space. A finite simple graph $G=(V,E)$ is said to be $(X,Y)$-flattenable if any set of induced edge lengths from an embedding of $G$ into a normed space $Y$ can also be realised by an embedding of $G$ into a normed space $X$. This property, being minor-closed, can be characterized by a finite list of forbidden minors. Following the establishment of fundamental results about $(X,Y)$-flattenability, we identify sufficient conditions under which it implies independence with respect to the associated rigidity matroids for $X$ and $Y$. We show that the spaces $\ell_2$ and $\ell_\infty$ serve as two natural extreme spaces of flattenability and discuss $(X, \ell_p )$-flattenability for varying $p$. We provide a complete characterization of $(X,Y)$-flattenable graphs for the specific case when $X$ is 2-dimensional and $Y$ is infinite-dimensional.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (26)
  1. Embeddability of snowflaked metrics with applications to the nonlinear geometry of the spaces Lpsubscript𝐿𝑝L_{p}italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT and ℓpsubscriptℓ𝑝\ell_{p}roman_ℓ start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT for 0<p<∞0𝑝0<p<\infty0 < italic_p < ∞. Journal of Geometric Analysis, 25:1–24, 2015. doi:10.1007/s12220-013-9390-0.
  2. Some characteristic and non-characteristic properties of inner product spaces. Journal of Approximation Theory, 55(3):318–325, 1988. doi:10.1016/0021-9045(88)90098-6.
  3. Keith Ball. Isometric embedding in lpsubscript𝑙𝑝l_{p}italic_l start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT-spaces. European Journal of Combinatorics, 11(4):305–311, 1990. doi:10.1016/S0195-6698(13)80131-X.
  4. Realizability of graphs. Discrete and Computational Geometry, 37:125–137, 2007. doi:10.1007/s00454-006-1284-5.
  5. The rank theorem for locally Lipschitz continuous functions. Canadian Mathematical Bulletin, 31(2):217–226, 1988. doi:10.4153/CMB-1988-034-8.
  6. Frank H. Clarke. Optimization and Nonsmooth Analysis. Society for Industrial and Applied Mathematics, 1990. doi:10.1137/1.9781611971309.
  7. Reihard Diestel. Graph Theory: 5th edition. Graduate Texts in Mathematics. Springer-Verlag, 2017. doi:10.1007/978-3-662-53622-3.
  8. Euclidean distance matrices: Essential theory, algorithms, and applications. IEEE Signal Processing Magazine, 32(6):12–30, 2015. doi:10.1109/MSP.2015.2398954.
  9. Leonard E. Dor. Potentials and isometric embeddings in L1subscript𝐿1L_{1}italic_L start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT. Israel Journal of Mathematics, 24:260–268, 1976. doi:10.1007/BF02834756.
  10. Unavoidable minors for graphs with large ℓpsubscriptℓ𝑝\ell_{p}roman_ℓ start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT-dimension. Discrete and Computational Geometry, 66:301–343, 2021. doi:h10.1007/s00454-021-00285-5.
  11. The excluded minors for isometric realizability in the plane. SIAM Journal on Discrete Mathematics, 31(1):438–453, 2017. doi:10.1137/16M1064775.
  12. Maurice Fréchet. Les dimensions d’un ensemble abstrait. Mathematische Annalen, 68:145–168, 1910. doi:10.1007/BF01474158.
  13. Carl S. Herz. A class of negative-definite functions. Proceedings of the American Mathematical Society, 14(4):670–676, 1963. doi:10.2307/2034298.
  14. Włodzimierz Holsztynski. ℝnsuperscriptℝ𝑛\mathbb{R}^{n}blackboard_R start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT as a universal metric space. In Notices of the AMS, volume 25, 1978.
  15. Derek Kitson. Finite and infinitesimal rigidity with polyhedral norms. Discrete and Computational Geometry, 54:390–411, 2015. doi:10.1007/s00454-015-9706-x.
  16. Göte Nordlander. The modulus of convexity in normed linear spaces. Arkiv för Matematik, 4(1):15–17, 1960. doi:10.1007/BF02591317.
  17. Clinton M. Petty. Equilateral sets in Minkowski spaces. Proceedings of the American Mathematical Society, 29(2):369–374, 1971.
  18. Graph minors XIII. The disjoint paths problem. Journal of Combinatorial Theory, Series B, 63(1):65–110, 1995. doi:10.1006/jctb.1995.1006.
  19. Graph minors XX. Wagner’s conjecture. Journal of Combinatorial Theory, Series B, 92(2):325–357, 2004. doi:10.1016/j.jctb.2004.08.001.
  20. Ralph Tyrell Rockafellar. Convex Analysis. Princeton University Press, Princeton, 1970. doi:doi:10.1515/9781400873173.
  21. Bipartite coverings of graphs. Combinatorics, Probability and Computing, 6(3):349–352, 1997. doi:10.1017/S0963548397003064.
  22. Isaac J Schoenberg. Remarks to Maurice Fréchet’s article “sur la definition axiomatique d’une classe d’espace distances vectoriellement applicable sur l’espace de Hilbert”. Annals of Mathematics, pages 724–732, 1935. doi:10.2307/1968654.
  23. Stanislav A Shkarin. Isometric embedding of finite ultrametric spaces in Banach spaces. Topology and its Applications, 142(1):13–17, 2004. doi:10.1016/j.topol.2003.12.002.
  24. On flattenability of graphs. In Francisco Botana and Pedro Quaresma, editors, Automated Deduction in Geometry, pages 129–148, Cham, 2015. Springer International Publishing.
  25. Convex optimization in Julia. SC14 Workshop on High Performance Technical Computing in Dynamic Languages, 2014. arXiv:1410.4821.
  26. Hans S. Witsenhausen. Minimum dimension embedding of finite metric spaces. Journal of Combinatorial Theory, Series A, 42(2):184–199, 1986. doi:10.1016/0097-3165(86)90089-0.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: