Papers
Topics
Authors
Recent
2000 character limit reached

Backtesting Expected Shortfall: Accounting for both duration and severity with bivariate orthogonal polynomials

Published 3 May 2024 in q-fin.RM | (2405.02012v3)

Abstract: We propose an original two-part, duration-severity approach for backtesting Expected Shortfall (ES). While Probability Integral Transform (PIT) based ES backtests have gained popularity, they have yet to allow for separate testing of the frequency and severity of Value-at-Risk (VaR) violations. This is a crucial aspect, as ES measures the average loss in the event of such violations. To overcome this limitation, we introduce a backtesting framework that relies on the sequence of inter-violation durations and the sequence of severities in case of violations. By leveraging the theory of (bivariate) orthogonal polynomials, we derive orthogonal moment conditions satisfied by these two sequences. Our approach includes a straightforward, model-free Wald test, which encompasses various unconditional and conditional coverage backtests for both VaR and ES. This test aids in identifying any mis-specified components of the internal model used by banks to forecast ES. Moreover, it can be extended to analyze other systemic risk measures such as Marginal Expected Shortfall. Simulation experiments indicate that our test exhibits good finite sample properties for realistic sample sizes. Through application to two stock indices, we demonstrate how our methodology provides insights into the reasons for rejections in testing ES validity.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We found no open problems mentioned in this paper.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 3 tweets with 4 likes about this paper.