Rescale-Invariant Federated Reinforcement Learning for Resource Allocation in V2X Networks (2405.01961v1)
Abstract: Federated Reinforcement Learning (FRL) offers a promising solution to various practical challenges in resource allocation for vehicle-to-everything (V2X) networks. However, the data discrepancy among individual agents can significantly degrade the performance of FRL-based algorithms. To address this limitation, we exploit the node-wise invariance property of ReLU-activated neural networks, with the aim of reducing data discrepancy to improve learning performance. Based on this property, we introduce a backward rescale-invariant operation to develop a rescale-invariant FRL algorithm. Simulation results demonstrate that the proposed algorithm notably enhances both convergence speed and convergent performance.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.