Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 168 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 130 tok/s Pro
Kimi K2 170 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

On the number of bound states for fractional Schr{ö}dinger operators with critical and super-critical exponent (2405.01903v1)

Published 3 May 2024 in math.AP

Abstract: We study the number $N_{<0}(H_s)$ of negative eigenvalues, counting multiplicities, of the fractional Schr\"odinger operator $H_s=(-\Delta)s-V(x)$ on $L2(\mathbb{R}d)$, for any $d\ge1$ and $s\ge d/2$. We prove a bound on $N_{<0}(H_s)$ which depends on $s-d/2$ being either an integer or not, the critical case $s=d/2$ requiring a further analysis. Our proof relies on a splitting of the Birman-Schwinger operator associated to this spectral problem into low- and high-energies parts, a projection of the low-energies part onto a suitable subspace, and, in the critical case $s=d/2$, a Cwikel-type estimate in the weak trace ideal $\mathcal{L}{2,\infty}$ to handle the high-energies part.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: