Papers
Topics
Authors
Recent
2000 character limit reached

Strategies for enhancing spin-shuttling fidelities in Si/SiGe quantum wells with random-alloy disorder (2405.01832v3)

Published 3 May 2024 in cond-mat.mes-hall

Abstract: Coherent coupling between distant qubits is needed for any scalable quantum computing scheme. In quantum dot systems, one proposal for long-distance coupling is to coherently transfer electron spins across a chip in a moving potential. Here, we use simulations to study challenges for spin shuttling in Si/SiGe heterostructures caused by the valley degree of freedom. We show that for devices with valley splitting dominated by alloy disorder, one can expect to encounter pockets of low valley splitting, given a long-enough shuttling path. At such locations, inter-valley tunneling leads to dephasing of the spin wavefunction, substantially reducing the shuttling fidelity. We show how to mitigate this problem by modifying the heterostructure composition, or by varying the vertical electric field, the shuttling velocity, the shape and size of the dot, or the shuttling path. We further show that combinations of these strategies can reduce the shuttling infidelity by several orders of magnitude, putting shuttling fidelities sufficient for error correction within reach.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (12)
  1. M. Serina, C. Kloeffel, and D. Loss, Long-range interaction between charge and spin qubits in quantum dots, Phys. Rev. B 95, 245422 (2017).
  2. A. Warren, E. Barnes, and S. E. Economou, Long-distance entangling gates between quantum dot spins mediated by a superconducting resonator, Phys. Rev. B 100, 161303 (2019).
  3. X. Mi, S. Kohler, and J. R. Petta, Landau-Zener interferometry of valley-orbit states in Si/SiGe double quantum dots, Phys. Rev. B 98, 161404(R) (2018).
  4. J. R. F. Lima and G. Burkard, Interface and electromagnetic effects in the valley splitting of Si quantum dots, Mater. Quantum. Technol. 3, 025004 (2023a).
  5. J. R. F. Lima and G. Burkard, Valley splitting depending on the size and location of a silicon quantum dot (2023b), arXiv:2310.17393 [cond-mat.mes-hall] .
  6. B. Buonacorsi, B. Shaw, and J. Baugh, Simulated coherent electron shuttling in silicon quantum dots, Physical Review B 102, 125406 (2020).
  7. X. Zhao and X. Hu, Coherent electron transport in silicon quantum dots, arXiv preprint arXiv:1803.00749  (2018).
  8. V. Sverdlov and S. Selberherr, Electron subband structure and controlled valley splitting in silicon thin-body SOI FETs: Two-band k⋅⋅\cdot⋅p theory and beyond, Solid-State Electronics 52, 1861 (2008), selected Papers from the EUROSOI ’08 Conference.
  9. C. J. Wood and J. M. Gambetta, Quantification and characterization of leakage errors, Physical Review A 97, 032306 (2018).
  10. J. D. Teske, P. Cerfontaine, and H. Bluhm, qopt: An experiment-oriented software package for qubit simulation and quantum optimal control, Physical Review Applied 17, 034036 (2022).
  11. N. Vitanov, Transition times in the landau-zener model, Physical Review A 59, 988 (1999).
  12. S. Müller and L. Schüler, GeoStat-Framework/GSTools: v1.5.0 ‘Nifty Neon’ (2023).
Citations (5)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.