Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 156 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

The Integrated Sensing and Communication Revolution for 6G: Vision, Techniques, and Applications (2405.01816v1)

Published 3 May 2024 in eess.SP

Abstract: Future wireless networks will integrate sensing, learning and communication to provide new services beyond communication and to become more resilient. Sensors at the network infrastructure, sensors on the user equipment, and the sensing capability of the communication signal itself provide a new source of data that connects the physical and radio frequency environments. A wireless network that harnesses all these sensing data can not only enable additional sensing services, but also become more resilient to channel-dependent effects like blockage and better support adaptation in dynamic environments as networks reconfigure. In this paper, we provide a vision for integrated sensing and communication (ISAC) networks and an overview of how signal processing, optimization and machine learning techniques can be leveraged to make them a reality in the context of 6G. We also include some examples of the performance of several of these strategies when evaluated using a simulation framework based on a combination of ray tracing measurements and mathematical models that mix the digital and physical worlds.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (299)
  1. “Shared Spectrum Access for Radar and Communications (SSPARC),” 2016. [Online]. Available: \url{https://www.darpa.mil/program/shared-spectrum-access-for-radar-and-communications}
  2. G. Tavik, C. Hilterbrick, J. Evins, J. Alter, J. Crnkovich, J. de Graaf, W. Habicht, G. Hrin, S. Lessin, D. Wu, and S. Hagewood, “The advanced multifunction RF concept,” IEEE Transactions on Microwave Theory and Techniques, vol. 53, no. 3, pp. 1009–1020, 2005.
  3. F. Liu, Y. Cui, C. Masouros, J. Xu, T. X. Han, Y. C. Eldar, and S. Buzzi, “Integrated sensing and communications: Toward dual-functional wireless networks for 6G and beyond,” IEEE Journal on Selected Areas in Communications, vol. 40, no. 6, pp. 1728–1767, 2022.
  4. “Roadmap to 6G,” 2022. [Online]. Available: \url{https://roadmap.nextgalliance.org/}
  5. “European vision for the 6G network ecosystem,” 2021. [Online]. Available: \url{https://5g-ppp.eu/wp-content/uploads/2021/06/WhitePaper-6G-Europe.pdf}
  6. “Industry specification group (ISG) integrated sensing and communications (ISAC),” 2023. [Online]. Available: \url{https://www.etsi.org/committee/2295-isac}
  7. H. Wymeersch, S. Saleh, A. Nimr, R. Halili, R. Berkvens, M. H. Moghaddam, J. M. Mateos-Ramos, A. Stavridis, S. Wänstedt, S. Barmpounakis, B. Priyanto, M. Beale, J. van de Beek, Z. Ye, M. Manalastas, A. Kousaridas, and G. P. Fettweis, “Joint communication and sensing for 6G – a cross-layer perspective,” 2024.
  8. A. Ali, N. González-Prelcic, R. W. Heath, and A. Ghosh, “Leveraging sensing at the infrastructure for mmWave communication,” IEEE Communications Magazine, vol. 58, no. 7, pp. 84–89, 2020.
  9. H. Holma, H. Viswanathan, and P. Mogensen, “Extreme massive MIMO for macro cell capacity boost in 5G-Advanced and 6G,” Nokia, Tech. Rep., 2021.
  10. M. A. Saeidi, H. Tabassum, and M.-S. Alouini, “Multi-band wireless networks: Architectures, challenges, and comparative analysis,” IEEE Communications Magazine, vol. 62, no. 1, pp. 80–86, 2024.
  11. S. Aboagye, M. A. Saeidi, H. Tabassum, Y. Tayyar, E. Hossain, H.-C. Yang, and M.-S. Alouini, “Multi-band wireless communication networks: Fundamentals, challenges, and resource allocation,” IEEE Transactions on Communications, pp. 1–1, 2024.
  12. R. W. Heath, N. González-Prelcic, S. Rangan, W. Roh, and A. M. Sayeed, “An overview of signal processing techniques for millimeter wave MIMO systems,” IEEE Journal of Selected Topics in Signal Processing, vol. 10, no. 3, pp. 436–453, 2016.
  13. A. Alkhateeb, J. Mo, N. Gonzalez-Prelcic, and R. W. Heath, “MIMO precoding and combining solutions for millimeter-wave systems,” IEEE Communications Magazine, vol. 52, no. 12, pp. 122–131, 2014.
  14. P. Kumari, A. Mezghani, and R. W. Heath, “A low-resolution adc proof-of-concept development for a fully-digital millimeter-wave joint communication-radar,” in ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2020, pp. 8619–8623.
  15. A. Kaushik, E. Vlachos, C. Masouros, C. Tsinos, and J. Thompson, “Green Joint Radar-Communications: RF Selection with Low Resolution DACs and Hybrid Precoding,” in ICC 2022 - IEEE International Conference on Communications, 2022, pp. 3160–3165.
  16. S. Kang, M. Mezzavilla, S. Rangan, A. Madanayake, S. B. Venkatakrishnan, G. Hellbourg, M. Ghosh, H. Rahmani, and A. Dhananjay, “Cellular wireless networks in the upper mid-band,” 2023.
  17. S. Dwivedi, R. Shreevastav, F. Munier, J. Nygren, I. Siomina, Y. Lyazidi, D. Shrestha, G. Lindmark, P. Ernström, E. Stare et al., “Positioning in 5G networks,” IEEE Communications Magazine, vol. 59, no. 11, pp. 38–44, 2021.
  18. 3GPP, “Feasibility study on integrated sensing and communication (release 19),” 3GPP, Tech. Rep. TR 22.837, 2023.
  19. ——, “Service requirements for integrated sensing and communication; stage 1 (release 19),” 3GPP, Tech. Rep. TR 22.837, 2023.
  20. B. Xiong, Z. Zhang, Y. Ge, H. Wang, H. Jiang, L. Wu, and Z. Zhang, “Channel Modeling for Heterogeneous Vehicular ISAC System with Shared Clusters,” in 2023 IEEE 98th Vehicular Technology Conference (VTC2023-Fall), 2023, pp. 1–6.
  21. Z. Zhang, R. He, B. Ai, M. Yang, C. Li, H. Mi, and Z. Zhang, “A general channel model for integrated sensing and communication scenarios,” IEEE Communications Magazine, vol. 61, no. 5, pp. 68–74, 2023.
  22. N. González-Prelcic, A. Ali, V. Va, and R. W. Heath, “Millimeter-wave communication with out-of-band information,” IEEE Communications Magazine, vol. 55, no. 12, pp. 140–146, 2017.
  23. V. Va, T. Shimizu, G. Bansal, and R. W. Heath, “Online learning for position-aided millimeter wave beam training,” IEEE Access, vol. 7, pp. 30 507–30 526, 2019.
  24. V. Va, J. Choi, T. Shimizu, G. Bansal, and R. W. Heath, “Inverse multipath fingerprinting for millimeter wave V2I beam alignment,” IEEE Transactions on Vehicular Technology, vol. 67, no. 5, pp. 4042–4058, 2018.
  25. A. Klautau, N. González-Prelcic, and R. W. Heath, “LIDAR data for deep learning-based mmWave beam-selection,” IEEE Wireless Commun. Lett., vol. 8, pp. 909–912, 2019.
  26. A. Graff, Y. Chen, N. González-Prelcic, and T. Shimizu, “Deep learning-based link configuration for radar-aided multiuser mmWave vehicle-to-infrastructure communication,” IEEE Transactions on Vehicular Technology, vol. 72, no. 6, pp. 7454–7468, 2023.
  27. S. Bi, J. Lyu, Z. Ding, and R. Zhang, “Engineering radio maps for wireless resource management,” IEEE Wireless Communications, vol. 26, no. 2, pp. 133–141, 2019.
  28. N. González-Prelcic, R. Mendez-Rial, and R. W. Heath, “Radar aided beam alignment in MmWave V2I communications supporting antenna diversity,” in Proc. Inf. Theory Appl. Workshop (ITA), 2016, pp. 1–7.
  29. M. Mühlhäuser, C. Meurisch, M. Stein, J. Daubert, J. Von Willich, J. Riemann, and L. Wang, “Street lamps as a platform,” Commun. ACM, vol. 63, no. 6, p. 75–83, may 2020. [Online]. Available: https://doi.org/10.1145/3376900
  30. G. Fettweis, M. Krondorf, and S. Bittner, “GFDM - generalized frequency division multiplexing,” in VTC Spring 2009 - IEEE 69th Vehicular Technology Conference, 2009, pp. 1–4.
  31. J. Bingham, “Multicarrier modulation for data transmission: an idea whose time has come,” IEEE Communications Magazine, vol. 28, no. 5, pp. 5–14, 1990.
  32. J. Yli-Kaakinen, T. Levanen, S. Valkonen, K. Pajukoski, J. Pirskanen, M. Renfors, and M. Valkama, “Efficient fast-convolution-based waveform processing for 5G physical layer,” IEEE Journal on Selected Areas in Communications, vol. 35, no. 6, pp. 1309–1326, 2017.
  33. J. Yli-Kaakinen, T. Levanen, A. Palin, M. Renfors, and M. Valkama, “Generalized fast-convolution-based filtered-OFDM: Techniques and application to 5G new radio,” IEEE Transactions on Signal Processing, vol. 68, pp. 1213–1228, 2020.
  34. T. Levanen, J. Pirskanen, K. Pajukoski, M. Renfors, and M. Valkama, “Transparent Tx and Rx waveform processing for 5G new radio mobile communications,” IEEE Wireless Communications, vol. 26, no. 1, pp. 128–136, 2019.
  35. L. Gaudio, M. Kobayashi, G. Caire, and G. Colavolpe, “On the effectiveness of OTFS for joint radar parameter estimation and communication,” IEEE Transactions on Wireless Communications, vol. 19, no. 9, pp. 5951–5965, 2020.
  36. S. D. Liyanaarachchi, T. Riihonen, C. B. Barneto, and M. Valkama, “Optimized waveforms for 5G–6G communication with sensing: Theory, simulations and experiments,” IEEE Transactions on Wireless Communications, vol. 20, no. 12, pp. 8301–8315, 2021.
  37. C. Sturm and W. Wiesbeck, “Waveform design and signal processing aspects for fusion of wireless communications and radar sensing,” Proceedings of the IEEE, vol. 99, no. 7, pp. 1236–1259, July 2011.
  38. M. F. Keskin, V. Koivunen, and H. Wymeersch, “Limited feedforward waveform design for OFDM dual-functional radar-communications,” IEEE Transactions on Signal Processing, vol. 69, pp. 2955–2970, 2021.
  39. M. Bică and V. Koivunen, “Multicarrier radar-communications waveform design for RF convergence and coexistence,” in Proc. IEEE ICASSP, 2019, pp. 7780–7784.
  40. K. Venugopal, A. Alkhateeb, N. González Prelcic, and R. W. Heath, “Channel estimation for hybrid architecture-based wideband millimeter wave systems,” IEEE Journal on Selected Areas in Communications, vol. 35, no. 9, pp. 1996–2009, 2017.
  41. P. Kumari, J. Choi, N. González-Prelcic, and R. W. Heath, “IEEE 802.11ad-based radar: An approach to joint vehicular communication-radar system,” IEEE Transactions on Vehicular Technology, vol. 67, no. 4, pp. 3012–3027, April 2018.
  42. 3GPP, “NR physical channels and modulation,” 3GPP TS38.211 V17.1.0, Sophia Antipolis, France, Tech. Rep., April 2022.
  43. M. F. Keskin, H. Wymeersch, and V. Koivunen, “MIMO-OFDM joint radar-communications: Is ICI friend or foe?” IEEE J. Sel. Topics Signal Process., vol. 15, no. 6, pp. 1393–1408, 2021.
  44. J. Palacios, N. González-Prelcic, and C. Rusu, “Low complexity joint position and channel estimation at millimeter wave based on multidimensional orthogonal matching pursuit,” in Proc. 30th Eur. Signal Process. Conf. (EUSIPCO).   IEEE, 2022, pp. 1002–1006.
  45. P. Chen and H. Kobayashi, “Maximum likelihood channel estimation and signal detection for OFDM systems,” in 2002 IEEE International Conference on Communications. Conference Proceedings. ICC 2002 (Cat. No.02CH37333), vol. 3, 2002, pp. 1640–1645 vol.3.
  46. R. Carvajal, J. C. Aguero, B. I. Godoy, and G. C. Goodwin, “Em-based maximum-likelihood channel estimation in multicarrier systems with phase distortion,” IEEE Transactions on Vehicular Technology, vol. 62, no. 1, pp. 152–160, 2013.
  47. B. Fleury, M. Tschudin, R. Heddergott, D. Dahlhaus, and K. Ingeman Pedersen, “Channel parameter estimation in mobile radio environments using the SAGE algorithm,” IEEE Journal on Selected Areas in Communications, vol. 17, no. 3, pp. 434–450, 1999.
  48. B. Fleury, P. Jourdan, and A. Stucki, “High-resolution channel parameter estimation for MIMO applications using the SAGE algorithm,” in 2002 International Zurich Seminar on Broadband Communications Access - Transmission - Networking (Cat. No.02TH8599), 2002, pp. 30–30.
  49. A. Shahmansoori, G. E. Garcia, G. Destino, G. Seco-Granados, and H. Wymeersch, “Position and orientation estimation through millimeter-wave MIMO in 5G systems,” IEEE Trans. Wireless Commun., vol. 17, no. 3, pp. 1822–1835, 2018.
  50. J. Lee, G.-T. Gil, and Y. H. Lee, “Exploiting spatial sparsity for estimating channels of hybrid MIMO systems in millimeter wave communications,” in 2014 IEEE Global Communications Conference, 2014, pp. 3326–3331.
  51. J. Rodríguez-Fernández, N. González-Prelcic, K. Venugopal, and R. W. Heath, “Frequency-domain compressive channel estimation for frequency-selective hybrid millimeter wave MIMO systems,” IEEE Transactions on Wireless Communications, vol. 17, no. 5, pp. 2946–2960, 2018.
  52. X. Wu, G. Yang, F. Hou, and S. Ma, “Low-complexity downlink channel estimation for millimeter-wave FDD massive MIMO systems,” IEEE Wireless Communications Letters, 2019.
  53. J. Palacios and N. González-Prelcic, “Separable multidimensional orthogonal matching pursuit and its application to joint localization and communication at mmWave,” in 2023 IEEE Globecom Workshops (GC Wkshps), 2023, pp. 1–6.
  54. F. Jiang, Y. Ge, M. Zhu, and H. Wymeersch, “High-dimensional channel estimation for simultaneous localization and communications,” in 2021 IEEE Wireless Communications and Networking Conference (WCNC), 2021, pp. 1–6.
  55. F. Wen, H. C. So, and H. Wymeersch, “Tensor decomposition-based beamspace ESPRIT algorithm for multidimensional harmonic retrieval,” in ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2020, pp. 4572–4576.
  56. J. Zhang, D. Rakhimov, and M. Haardt, “Gridless channel estimation for hybrid mmWave MIMO systems via tensor-ESPRIT algorithms in DFT beamspace,” IEEE Journal of Selected Topics in Signal Processing, vol. 15, no. 3, pp. 816–831, 2021.
  57. Y. Chen, N. González-Prelcic, T. Shimizu, H. Lu, and C. Mahabal, “Beamspace ESPRIT-D for Joint 3D Angle and Delay Estimation for Joint Localization and Communication at MmWave,” arXiv preprint, 2024.
  58. M. Bayraktar, C. Rusu, N. González-Prelcic, and C. J. Zhang, “Beam codebook design for joint initial access and localization in mmwave networks,” in 2022 56th Asilomar Conference on Signals, Systems, and Computers, 2022, pp. 919–924.
  59. X. Ge, W. Shen, C. Xing, L. Zhao, and J. An, “Training beam design for channel estimation in hybrid mmwave mimo systems,” IEEE Transactions on Wireless Communications, vol. 21, no. 9, pp. 7121–7134, 2022.
  60. M. F. Keskin, F. Jiang, F. Munier, G. Seco-Granados, and H. Wymeersch, “Optimal spatial signal design for mmWave positioning under imperfect synchronization,” IEEE Transactions on Vehicular Technology, vol. 71, no. 5, pp. 5558–5563, 2022.
  61. A. Fascista, M. F. Keskin, A. Coluccia, H. Wymeersch, and G. Seco-Granados, “RIS-aided joint localization and synchronization with a single-antenna receiver: Beamforming design and low-complexity estimation,” IEEE Journal of Selected Topics in Signal Processing, vol. 16, no. 5, pp. 1141–1156, 2022.
  62. S. Rivetti, J. Miguel Mateos-Ramos, Y. Wu, J. Song, M. F. Keskin, V. Yajnanarayana, C. Häger, and H. Wymeersch, “Spatial signal design for positioning via end-to-end learning,” IEEE Wireless Communications Letters, vol. 12, no. 3, pp. 525–529, 2023.
  63. S. H. Talisa, K. W. O’Haver, T. M. Comberiate, M. D. Sharp, and O. F. Somerlock, “Benefits of digital phased array radars,” Proceedings of the IEEE, vol. 104, no. 3, pp. 530–543, 2016.
  64. I. Aykin and M. Krunz, “Efficient beam sweeping algorithms and initial access protocols for millimeter-wave networks,” IEEE Transactions on Wireless Communications, vol. 19, no. 4, pp. 2504–2514, 2020.
  65. U. Nickel, “Overview of generalized monopulse estimation,” IEEE Aerospace and Electronic Systems Magazine, vol. 21, no. 6, pp. 27–56, 2006.
  66. M. Z. Win, W. Dai, Y. Shen, G. Chrisikos, and H. Vincent Poor, “Network operation strategies for efficient localization and navigation,” Proceedings of the IEEE, vol. 106, no. 7, pp. 1224–1254, 2018.
  67. Y. Shen and M. Z. Win, “Fundamental limits of wideband localization— part I: A general framework,” IEEE Transactions on Information Theory, vol. 56, no. 10, pp. 4956–4980, 2010.
  68. R. Miller and C. Chang, “A modified Cramér-Rao bound and its applications (corresp.),” IEEE Transactions on Information Theory, vol. 24, no. 3, pp. 398–400, 1978.
  69. F. Liu, W. Yuan, C. Masouros, and J. Yuan, “Radar-assisted predictive beamforming for vehicular links: Communication served by sensing,” IEEE Transactions on Wireless Communications, vol. 19, no. 11, pp. 7704–7719, 2020.
  70. F. Liu, C. Masouros, A. Li, H. Sun, and L. Hanzo, “MU-MIMO communications with MIMO radar: From co-existence to joint transmission,” IEEE Transactions on Wireless Communications, vol. 17, no. 4, pp. 2755–2770, 2018.
  71. H. Zhang, Y. Zhang, X. Liu, C. Ren, H. Li, and C. Sun, “Time allocation approaches for a perceptive mobile network using integration of sensing and communication,” IEEE Transactions on Wireless Communications, pp. 1–1, 2023.
  72. W. Dai, Y. Shen, and M. Z. Win, “A computational geometry framework for efficient network localization,” IEEE Transactions on Information Theory, vol. 64, no. 2, pp. 1317–1339, 2018.
  73. W. W.-L. Li, Y. Shen, Y. J. Zhang, and M. Z. Win, “Robust power allocation for energy-efficient location-aware networks,” IEEE/ACM Transactions on Networking, vol. 21, no. 6, pp. 1918–1930, 2013.
  74. H. Zhao, N. Zhang, and Y. Shen, “Beamspace direct localization for large-scale antenna array systems,” IEEE Transactions on Signal Processing, vol. 68, pp. 3529–3544, 2020.
  75. C. Ding, J.-B. Wang, H. Zhang, M. Lin, and G. Y. Li, “Joint MIMO precoding and computation resource allocation for dual-function radar and communication systems with mobile edge computing,” IEEE Journal on Selected Areas in Communications, vol. 40, no. 7, pp. 2085–2102, 2022.
  76. D. Xu, X. Yu, D. W. K. Ng, A. Schmeink, and R. Schober, “Robust and secure resource allocation for ISAC systems: A novel optimization framework for variable-length snapshots,” IEEE Transactions on Communications, vol. 70, no. 12, pp. 8196–8214, 2022.
  77. F. Wang, H. Li, and M. A. Govoni, “Power allocation and co-design of multicarrier communication and radar systems for spectral coexistence,” IEEE Transactions on Signal Processing, vol. 67, no. 14, pp. 3818–3831, 2019.
  78. J. Mu, W. Ouyang, Z. Jing, B. Li, and F. Zhang, “Energy-efficient interference cancellation in integrated sensing and communication scenarios,” IEEE Transactions on Green Communications and Networking, vol. 7, no. 1, pp. 370–378, 2023.
  79. Y. Xiong, F. Liu, Y. Cui, W. Yuan, T. X. Han, and G. Caire, “On the fundamental tradeoff of integrated sensing and communications under gaussian channels,” IEEE Transactions on Information Theory, vol. 69, no. 9, pp. 5723–5751, 2023.
  80. A. R. Chiriyath, B. Paul, G. M. Jacyna, and D. W. Bliss, “Inner bounds on performance of radar and communications co-existence,” IEEE Transactions on Signal Processing, vol. 64, no. 2, pp. 464–474, 2016.
  81. B. Li, X. Wang, Y. Xin, and E. Au, “Value of service maximization in integrated localization and communication system through joint resource allocation,” IEEE Transactions on Communications, vol. 71, no. 8, pp. 4957–4971, 2023.
  82. H. Yang, Z. Wei, Z. Feng, C. Qiu, Z. Fang, X. Chen, and P. Zhang, “Queue-aware dynamic resource allocation for the joint communication-radar system,” IEEE Transactions on Vehicular Technology, vol. 70, no. 1, pp. 754–767, 2021.
  83. L. Pucci, E. Paolini, and A. Giorgetti, “System-level analysis of joint sensing and communication based on 5G new radio,” IEEE Journal on Selected Areas in Communications, vol. 40, no. 7, pp. 2043–2055, 2022.
  84. A. Fascista, B. J. Deutschmann, M. F. Keskin, T. Wilding, A. Coluccia, K. Witrisal, E. Leitinger, G. Seco-Granados, and H. Wymeersch, “Uplink joint positioning and synchronization in cell-free deployments with radio stripes,” in Proc. IEEE Int. Conf. Commun. (ICC) Workshops, May. 2023, pp. 1330–1336.
  85. N. Vukmirović, M. Erić, M. Janjić, and P. M. Djurić, “Direct wideband coherent localization by distributed antenna arrays,” Sensors, vol. 19, no. 20, p. 4582, 2019.
  86. A. M. Haimovich, R. S. Blum, and L. J. Cimini, “MIMO radar with widely separated antennas,” IEEE signal processing magazine, vol. 25, no. 1, pp. 116–129, 2007.
  87. H. Wymeersch and G. Seco-Granados, “Radio localization and sensing—part I: Fundamentals,” IEEE Communications Letters, vol. 26, no. 12, pp. 2816–2820, 2022.
  88. S. E. Trevlakis, A.-A. A. Boulogeorgos, D. Pliatsios, J. Querol, K. Ntontin, P. Sarigiannidis, S. Chatzinotas, and M. Di Renzo, “Localization as a key enabler of 6G wireless systems: A comprehensive survey and an outlook,” IEEE Open Journal of the Communications Society, 2023.
  89. İ. Güvenç, C.-C. Chong, F. Watanabe, and H. Inamura, “NLOS identification and weighted least-squares localization for UWB systems using multipath channel statistics,” EURASIP Journal on Advances in Signal Processing, vol. 2008, pp. 1–14, 2007.
  90. H. Wymeersch, N. Garcia, H. Kim, G. Seco-Granados, S. Kim, F. Wen, and M. Fröhle, “5G mmWave downlink vehicular positioning,” in 2018 IEEE Global Communications Conference (GLOBECOM).   IEEE, 2018, pp. 206–212.
  91. B. Camajori Tedeschini, M. Brambilla, L. Italiano, S. Reggiani, D. Vaccarono, M. Alghisi, L. Benvenuto, A. Goia, E. Realini, F. Grec et al., “A feasibility study of 5G positioning with current cellular network deployment,” Scientific reports, vol. 13, no. 1, p. 15281, 2023.
  92. M. Koivisto, M. Costa, J. Werner, K. Heiska, J. Talvitie, K. Leppänen, V. Koivunen, and M. Valkama, “Joint device positioning and clock synchronization in 5G ultra-dense networks,” IEEE Transactions on Wireless Communications, vol. 16, no. 5, pp. 2866–2881, 2017.
  93. M. A. Nazari, G. Seco-Granados, P. Johannisson, and H. Wymeersch, “Mmwave 6D radio localization with a snapshot observation from a single BS,” IEEE Transactions on Vehicular Technology, 2023.
  94. Y. Chen, J. Palacios, N. González-Prelcic, T. Shimizu, and H. Lu, “Joint initial access and localization in millimeter wave vehicular networks: a hybrid model/data driven approach,” in 2022 IEEE 12th Sensor Array and Multichannel Signal Processing Workshop (SAM).   IEEE, 2022, pp. 355–359.
  95. F. Gustafsson and F. Gunnarsson, “Mobile positioning using wireless networks: possibilities and fundamental limitations based on available wireless network measurements,” IEEE Signal processing magazine, vol. 22, no. 4, pp. 41–53, 2005.
  96. G. Wang, A. M.-C. So, and Y. Li, “Robust convex approximation methods for TDOA-based localization under NLOS conditions,” IEEE Transactions on Signal processing, vol. 64, no. 13, pp. 3281–3296, 2016.
  97. Y. Lu, O. Kaltiokallio, M. Koivisto, J. Talvitie, E. S. Lohan, H. Wymeersch, and M. Valkama, “Bayesian filtering for joint multi-user positioning, synchronization and anchor state calibration,” IEEE Transactions on Vehicular Technology, 2023.
  98. S. Burgess, Y. Kuang, and K. Åström, “TOA sensor network self-calibration for receiver and transmitter spaces with difference in dimension,” Signal Processing, vol. 107, pp. 33–42, 2015.
  99. X. Li, E. Leitinger, M. Oskarsson, K. Åström, and F. Tufvesson, “Massive MIMO-based localization and mapping exploiting phase information of multipath components,” IEEE transactions on wireless communications, vol. 18, no. 9, pp. 4254–4267, 2019.
  100. Y. T. Chan and K. C. Ho, “A simple and efficient estimator for hyperbolic location,” IEEE transactions on signal processing, vol. 42, no. 8, pp. 1905–1915, 1994.
  101. H. Dun, C. C. Tiberius, and G. J. Janssen, “Positioning in a multipath channel using OFDM signals with carrier phase tracking,” IEEE Access, vol. 8, pp. 13 011–13 028, 2020.
  102. J. Talvitie, M. Säily, and M. Valkama, “Orientation and Location Tracking of XR Devices: 5G Carrier Phase-Based Methods,” IEEE Journal of Selected Topics in Signal Processing, pp. 1–16, 2023.
  103. E. Leitinger, F. Meyer, F. Hlawatsch, K. Witrisal, F. Tufvesson, and M. Z. Win, “A belief propagation algorithm for multipath-based SLAM,” IEEE Transactions on Wireless Communications, vol. 18, no. 12, pp. 5613–5629, 2019.
  104. C. Gentner, T. Jost, W. Wang, S. Zhang, A. Dammann, and U.-C. Fiebig, “Multipath assisted positioning with simultaneous localization and mapping,” IEEE Transactions on Wireless Communications, vol. 15, no. 9, pp. 6104–6117, 2016.
  105. H. Chen, H. Kim, M. Ammous, G. Seco-Granados, G. C. Alexandropoulos, S. Valaee, and H. Wymeersch, “RISs and sidelink communications in smart cities: The key to seamless localization and sensing,” IEEE Communications Magazine, vol. 61, no. 8, pp. 140–146, 2023.
  106. A. Elzanaty, A. Guerra, F. Guidi, and M.-S. Alouini, “Reconfigurable intelligent surfaces for localization: Position and orientation error bounds,” IEEE Transactions on Signal Processing, vol. 69, pp. 5386–5402, 2021.
  107. Z. Wang, Z. Liu, Y. Shen, A. Conti, and M. Z. Win, “Location awareness in beyond 5G networks via reconfigurable intelligent surfaces,” IEEE Journal on Selected Areas in Communications, vol. 40, no. 7, pp. 2011–2025, 2022.
  108. Q. Liu, P. Liang, J. Xia, T. Wang, M. Song, X. Xu, J. Zhang, Y. Fan, and L. Liu, “A highly accurate positioning solution for C-V2X systems,” Sensors, vol. 21, no. 4, p. 1175, 2021.
  109. Z. Li, K. Xu, H. Wang, Y. Zhao, X. Wang, and M. Shen, “Machine-learning-based positioning: A survey and future directions,” IEEE Network, vol. 33, no. 3, pp. 96–101, 2019.
  110. H. Kim, K. Granström, L. Svensson, S. Kim, and H. Wymeersch, “PMBM-based SLAM filters in 5G mmWave vehicular networks,” IEEE Transactions on Vehicular Technology, vol. 71, no. 8, pp. 8646–8661, 2022.
  111. R. Keating, M. Säily, J. Hulkkonen, and J. Karjalainen, “Overview of positioning in 5G new radio,” in 2019 16th International Symposium on Wireless Communication Systems (ISWCS).   IEEE, 2019, pp. 320–324.
  112. N. Garcia, H. Wymeersch, E. G. Larsson, A. M. Haimovich, and M. Coulon, “Direct localization for massive MIMO,” IEEE Transactions on Signal Processing, vol. 65, no. 10, pp. 2475–2487, 2017.
  113. X. Gao, O. Edfors, F. Tufvesson, and E. G. Larsson, “Massive MIMO in real propagation environments: Do all antennas contribute equally?” IEEE Transactions on Communications, vol. 63, no. 11, pp. 3917–3928, 2015.
  114. TR 38.901, “Study on channel model for frequencies from 0.5 to 100 GHz, ver17.0.0,” 3GPP, 2023.
  115. M. Pesavento, M. Trinh-Hoang, and M. Viberg, “Three more decades in array signal processing research: An optimization and structure exploitation perspective,” IEEE Signal Processing Magazine, vol. 40, no. 4, pp. 92–106, 2023.
  116. A. Shastri, N. Valecha, E. Bashirov, H. Tataria, M. Lentmaier, F. Tufvesson, M. Rossi, and P. Casari, “A review of millimeter wave device-based localization and device-free sensing technologies and applications,” IEEE Communications Surveys & Tutorials, vol. 24, no. 3, pp. 1708–1749, 2022.
  117. H. Chen, H. Sarieddeen, T. Ballal, H. Wymeersch, M.-S. Alouini, and T. Y. Al-Naffouri, “A tutorial on terahertz-band localization for 6G communication systems,” IEEE Communications Surveys & Tutorials, vol. 24, no. 3, pp. 1780–1815, 2022.
  118. J. Zhang, X. Ge, Q. Li, M. Guizani, and Y. Zhang, “5G millimeter-wave antenna array: Design and challenges,” IEEE Wireless communications, vol. 24, no. 2, pp. 106–112, 2016.
  119. H. Chen, M. F. Keskin, S. R. Aghdam, H. Kim, S. Lindberg, A. Wolfgang, T. E. Abrudan, T. Eriksson, and H. Wymeersch, “Modeling and analysis of 6G joint localization and communication under hardware impairments,” arXiv preprint arXiv:2301.01042, 2023.
  120. D. Tubail, B. Ceniklioglu, A. E. Canbilen, I. Develi, and S. S. Ikki, “The effect of hardware impairments on the error bounds of localization and maximum likelihood estimation of mm-Wave MISO-OFDM systems,” IEEE Transactions on Vehicular Technology, vol. 72, no. 3, pp. 4063–4067, 2022.
  121. M. Shafi, J. Zhang, H. Tataria, A. F. Molisch, S. Sun, T. S. Rappaport, F. Tufvesson, S. Wu, and K. Kitao, “Microwave vs. millimeter-wave propagation channels: Key differences and impact on 5G cellular systems,” IEEE Communications Magazine, vol. 56, no. 12, pp. 14–20, 2018.
  122. T. S. Rappaport, Y. Xing, O. Kanhere, S. Ju, A. Madanayake, S. Mandal, A. Alkhateeb, and G. C. Trichopoulos, “Wireless communications and applications above 100 GHz: Opportunities and challenges for 6G and beyond,” IEEE access, vol. 7, pp. 78 729–78 757, 2019.
  123. Remcom. Wireless InSite - 3D Wireless Prediction Software. Accessed: Oct 9, 2022). [Online]. Available: https://www.remcom.com/wireless-insite-em-propagation-software
  124. 3GPP, “Technical specification group radio access network; study on evaluation methodology of new vehicle-to-everything (V2X) use cases for LTE and NR,” TR 37.885, Technical Report 15.3.0, 2019.
  125. Y. Ge, M. Stark, M. F. Keskin, F. Hofmann, T. Hansen, and H. Wymeersch, “V2X sidelink positioning in FR1: Scenarios, algorithms, and performance evaluation,” arXiv preprint arXiv:2310.13753, 2023.
  126. S. He and S.-H. G. Chan, “Wi-Fi fingerprint-based indoor positioning: Recent advances and comparisons,” IEEE Communications Surveys & Tutorials, vol. 18, no. 1, pp. 466–490, 2016.
  127. R. Klus, J. Talvitie, J. Vinogradova, J. Torsner, and M. Valkama, “Machine learning based NLOS radio positioning in beamforming networks,” in 2022 IEEE 23rd International Workshop on Signal Processing Advances in Wireless Communication (SPAWC), 2022, pp. 1–5.
  128. P. Wang, T. Koike-Akino, and P. V. Orlik, “Fingerprinting-based indoor localization with commercial MMWave WiFi: NLOS propagation,” in GLOBECOM 2020 - 2020 IEEE Global Communications Conference, 2020, pp. 1–6.
  129. P. Bahl and V. Padmanabhan, “RADAR: an in-building RF-based user location and tracking system,” in Proceedings IEEE INFOCOM 2000. Conference on Computer Communications. Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies (Cat. No.00CH37064), vol. 2, 2000, pp. 775–784 vol.2.
  130. Q. D. Vo and P. De, “A survey of fingerprint-based outdoor localization,” IEEE Communications Surveys & Tutorials, vol. 18, no. 1, pp. 491–506, 2016.
  131. J. Hu, D. Liu, Z. Yan, and H. Liu, “Experimental analysis on weight K𝐾{K}italic_K -nearest neighbor indoor fingerprint positioning,” IEEE Internet of Things Journal, vol. 6, no. 1, pp. 891–897, 2019.
  132. M. Youssef and A. Agrawala, “The Horus WLAN location determination system,” in Proceedings of the 3rd International Conference on Mobile Systems, Applications, and Services, ser. MobiSys ’05.   New York, NY, USA: Association for Computing Machinery, 2005, p. 205–218. [Online]. Available: https://doi.org/10.1145/1067170.1067193
  133. B. Mager, P. Lundrigan, and N. Patwari, “Fingerprint-based device-free localization performance in changing environments,” IEEE Journal on Selected Areas in Communications, vol. 33, no. 11, pp. 2429–2438, 2015.
  134. X. Sun, X. Gao, G. Y. Li, and W. Han, “Single-site localization based on a new type of fingerprint for massive MIMO-OFDM systems,” IEEE Transactions on Vehicular Technology, vol. 67, no. 7, pp. 6134–6145, 2018.
  135. C. Wu, X. Yi, W. Wang, L. You, Q. Huang, X. Gao, and Q. Liu, “Learning to localize: A 3D CNN approach to user positioning in massive MIMO-OFDM systems,” IEEE Transactions on Wireless Communications, vol. 20, no. 7, pp. 4556–4570, 2021.
  136. J. Xiao, K. Wu, Y. Yi, and L. M. Ni, “FIFS: Fine-grained indoor fingerprinting system,” in 2012 21st International Conference on Computer Communications and Networks (ICCCN), 2012, pp. 1–7.
  137. X. Wang, L. Gao, S. Mao, and S. Pandey, “CSI-based fingerprinting for indoor localization: A deep learning approach,” IEEE Transactions on Vehicular Technology, vol. 66, no. 1, pp. 763–776, 2017.
  138. B. Zhang, H. Sifaou, and G. Y. Li, “CSI-fingerprinting indoor localization via attention-augmented residual convolutional neural network,” IEEE Transactions on Wireless Communications, vol. 22, no. 8, pp. 5583–5597, 2023.
  139. P. Ferrand, A. Decurninge, and M. Guillaud, “DNN-based localization from channel estimates: Feature design and experimental results,” in GLOBECOM 2020 - 2020 IEEE Global Communications Conference, 2020, pp. 1–6.
  140. Y. Chen, N. González-Prelcic, T. Shimizu, and H. Lu, “Learning to localize with attention: from sparse mmWave channel estimates from a single BS to high accuracy 3D location,” arXiv preprint arXiv:2307.00167, 2023.
  141. Y. Chen, N. González-Prelcic, T. Shimizu, H. Lu, and C. Mahabal, “Sparse recovery with attention: A hybrid data/model driven solution for high accuracy position and channel tracking at mmWave,” in IEEE 24th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), 2023, pp. 491–495.
  142. A. Salihu, S. Schwarz, and M. Rupp, “Attention aided CSI wireless localization,” in 2022 IEEE 23rd International Workshop on Signal Processing Advances in Wireless Communication (SPAWC), 2022, pp. 1–5.
  143. H. Chen, Y. Zhang, W. Li, X. Tao, and P. Zhang, “ConFi: Convolutional neural networks based indoor Wi-Fi localization using channel state information,” IEEE Access, vol. 5, pp. 18 066–18 074, 2017.
  144. M. M. Butt, A. Pantelidou, and I. Z. Kovács, “ML-assisted UE positioning: Performance analysis and 5G architecture enhancements,” IEEE Open Journal of Vehicular Technology, vol. 2, pp. 377–388, 2021.
  145. J. Gante, G. Falcao, and L. Sousa, “Deep learning architectures for accurate millimeter wave positioning in 5G,” Neural Processing Letters, vol. 51, no. 1, pp. 487–514, 2020.
  146. G. Kia, L. Ruotsalainen, and J. Talvitie, “A CNN approach for 5G mmWave positioning using beamformed CSI measurements,” in 2022 International Conference on Localization and GNSS (ICL-GNSS).   IEEE, 2022, pp. 01–07.
  147. X. Wang, M. Patil, C. Yang, S. Mao, and P. A. Patel, “Deep convolutional Gaussian processes for mmwave outdoor localization,” in ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).   IEEE, 2021, pp. 8323–8327.
  148. M. A. M. Sadr, J. Gante, B. Champagne, G. Falcao, and L. Sousa, “Uncertainty estimation via Monte Carlo dropout in CNN-based mmWave MIMO localization,” IEEE Signal Processing Letters, vol. 29, pp. 269–273, 2021.
  149. Z. Chen, Z. Zhang, Z. Xiao, C. Zhang, and Z. Yang, “CSI of each subcarrier is a fingerprint: Multi-carrier cumulative learning based positioning in massive MIMO systems,” in 2023 IEEE 34th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), 2023, pp. 1–7.
  150. Z. Gao, Y. Gao, S. Wang, D. Li, and Y. Xu, “CRISLoc: Reconstructable CSI fingerprinting for indoor smartphone localization,” IEEE Internet of Things Journal, vol. 8, no. 5, pp. 3422–3437, 2021.
  151. S. Shi, S. Sigg, L. Chen, and Y. Ji, “Accurate location tracking from csi-based passive device-free probabilistic fingerprinting,” IEEE Transactions on Vehicular Technology, vol. 67, no. 6, pp. 5217–5230, 2018.
  152. Z. Zhang, M. Lee, and S. Choi, “Deep-learning-based wi-fi indoor positioning system using continuous csi of trajectories,” Sensors, vol. 21, no. 17, 2021. [Online]. Available: https://www.mdpi.com/1424-8220/21/17/5776
  153. T. Linget, “System architecture and solution development; high-accuracy positioning for C-V2X,” 5G Automotive Association, 2021.
  154. Y. Ge, M. Stark, M. F. Keskin, F. Hofmann, T. Hansen, and H. Wymeersch, “Analysis of V2X sidelink positioning in sub-6 GHz,” in 2023 IEEE 3rd International Symposium on Joint Communications & Sensing (JC&S).   IEEE, 2023, pp. 1–6.
  155. N. Decarli, A. Guerra, C. Giovannetti, F. Guidi, and B. M. Masini, “V2X sidelink localization of connected automated vehicles,” IEEE Journal on Selected Areas in Communications, pp. 1–1, 2023.
  156. Y. Shen, H. Wymeersch, and M. Z. Win, “Fundamental limits of wideband localization— part ii: Cooperative networks,” IEEE Transactions on Information Theory, vol. 56, no. 10, pp. 4981–5000, 2010.
  157. M. Z. Win, Y. Shen, and W. Dai, “A theoretical foundation of network localization and navigation,” Proceedings of the IEEE, vol. 106, no. 7, pp. 1136–1165, 2018.
  158. S. Mazuelas, Y. Shen, and M. Z. Win, “Spatiotemporal information coupling in network navigation,” IEEE Transactions on Information Theory, vol. 64, no. 12, pp. 7759–7779, 2018.
  159. X. Shen, Y. Liu, and Y. Shen, “On the spatial information coupling in relative localization networks,” in ICC 2021 - IEEE International Conference on Communications, 2021, pp. 1–6.
  160. Y. Xiong, N. Wu, Y. Shen, and M. Z. Win, “Cooperative localization in massive networks,” IEEE Transactions on Information Theory, vol. 68, no. 2, pp. 1237–1258, 2022.
  161. W. Dai, Y. Shen, and M. Z. Win, “Distributed power allocation for cooperative wireless network localization,” IEEE Journal on Selected Areas in Communications, vol. 33, no. 1, pp. 28–40, 2015.
  162. J. Chen, W. Dai, Y. Shen, V. K. N. Lau, and M. Z. Win, “Power management for cooperative localization: A game theoretical approach,” IEEE Transactions on Signal Processing, vol. 64, no. 24, pp. 6517–6532, 2016.
  163. E. Basar, M. Di Renzo, J. De Rosny, M. Debbah, M.-S. Alouini, and R. Zhang, “Wireless communications through reconfigurable intelligent surfaces,” IEEE access, vol. 7, pp. 116 753–116 773, 2019.
  164. K. Keykhosravi, M. F. Keskin, G. Seco-Granados, P. Popovski, and H. Wymeersch, “RIS-enabled SISO localization under user mobility and spatial-wideband effects,” IEEE Journal of Selected Topics in Signal Processing, vol. 16, no. 5, pp. 1125–1140, 2022.
  165. J. He, A. Fakhreddine, and G. C. Alexandropoulos, “STAR-RIS-enabled simultaneous indoor and outdoor 3D localisation: Theoretical analysis and algorithmic design,” IET Signal Processing, vol. 17, no. 4, p. e12209, 2023.
  166. H. Li, S. Shen, and B. Clerckx, “Beyond diagonal reconfigurable intelligent surfaces: A multi-sector mode enabling highly directional full-space wireless coverage,” IEEE Journal on Selected Areas in Communications, vol. 41, no. 8, pp. 2446–2460, 2023.
  167. E. Björnson, H. Wymeersch, B. Matthiesen, P. Popovski, L. Sanguinetti, and E. de Carvalho, “Reconfigurable intelligent surfaces: A signal processing perspective with wireless applications,” IEEE Signal Processing Magazine, vol. 39, no. 2, pp. 135–158, 2022.
  168. M. Mizmizi, D. Tagliaferri, D. Badini, and U. Spagnolini, “Target-to-user association in ISAC systems with vehicle-lodged RIS,” IEEE Wireless Communications Letters, 2023.
  169. M. Bayraktar, J. Palacios, N. González-Prelcic, and C. J. Zhang, “Multidimensional orthogonal matching pursuit-based RIS-aided joint localization and channel estimation at mmWave,” in Proc. IEEE 23rd Int. Workshop Signal Process. Advances Wireless Commun. (SPAWC).   IEEE, 2022, pp. 1–5.
  170. W. Ding, W. Sun, Y. Gao, and J. Wu, “Carrier Phase-Based Precise Heading and Pitch Estimation Using a Low-Cost GNSS Receiver,” Remote Sensing, vol. 13, no. 18, 2021.
  171. 3GPP, TR 38.859 V18.0.0, “Study on expanded and improved NR positioning (Release 18),” Dec. 2022. [Online]. Available: www.3gpp.org
  172. 3GPP, RP-223549, “Expanded and Improved NR Positioning Work Item Description (Release 18),” Dec. 2022. [Online]. Available: www.3gpp.org
  173. P. Teunissen, “The least-squares ambiguity decorrelation adjustment: A method for fast GPS integer ambiguity estimation,” Journal of Geodesy, vol. 70, pp. 65–82, Nov. 1995.
  174. D. B. Cox Jr. and J. D. W. Brading, “Integration of LAMBDA ambiguity resolution with Kalman filter for relative navigation of spacecraft,” NAVIGATION, vol. 47, no. 3, pp. 205–210, 2000.
  175. L. Chen et al., “Carrier Phase Ranging for Indoor Positioning With 5G NR Signals,” IEEE Internet of Things Journal, vol. 9, pp. 10 908–10 919, 2022.
  176. S. Fan et al., “Carrier Phase-Based Synchronization and High-Accuracy Positioning in 5G New Radio Cellular Networks,” IEEE Transactions on Communications, vol. 70, no. 1, pp. 564–577, 2022.
  177. B.-n. Vo, M. Mallick, Y. Bar-Shalom, S. Coraluppi, R. Osborne, R. Mahler, and B.-t. Vo, “Multitarget tracking,” Wiley encyclopedia of electrical and electronics engineering, no. 2015, 2015.
  178. K. Granstrom, M. Baum, and S. Reuter, “Extended object tracking: Introduction, overview and applications,” arXiv preprint arXiv:1604.00970, 2016.
  179. J. L. Williams and R. A. Lau, “Data association by loopy belief propagation,” in 2010 13th International Conference on Information Fusion.   IEEE, 2010, pp. 1–8.
  180. W. Yi, G. Li, and G. Battistelli, “Distributed multi-sensor fusion of PHD filters with different sensor fields of view,” IEEE Transactions on Signal Processing, vol. 68, pp. 5204–5218, 2020.
  181. H. Kim, K. Granström, L. Gao, G. Battistelli, S. Kim, and H. Wymeersch, “5G mmWave cooperative positioning and mapping using multi-model PHD filter and map fusion,” IEEE Transactions on Wireless Communications, vol. 19, no. 6, pp. 3782–3795, 2020.
  182. O. Kaltiokallio et al., “Towards real-time Radio-SLAM via optimal importance sampling,” in Proc. IEEE SPAWC, 2022, pp. 1–5.
  183. M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit, “FastSLAM: A factored solution to the simultaneous localization and mapping problem,” in Eighteenth National Conference on Artificial Intelligence.   USA: American Association for Artificial Intelligence, 2002, p. 593–598.
  184. C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira, I. Reid, and J. J. Leonard, “Past, present, and future of simultaneous localization and mapping: Toward the robust-perception age,” IEEE Trans. Robot., vol. 32, no. 6, pp. 1309–1332, 2016.
  185. F. Wen and H. Wymeersch, “5G synchronization, positioning, and mapping from diffuse multipath,” IEEE Wireless Commun. Lett., vol. 10, no. 1, pp. 43–47, 2021.
  186. E. Rastorgueva-Foi, O. Kaltiokallio, Y. Ge, M. Turunen, J. Talvitie, B. Tan, M. F. Keskin, H. Wymeersch, and M. Valkama, “Millimeter-wave radio SLAM: End-to-end processing methods and experimental validation,” 2023.
  187. C. B. Barneto, S. D. Liyanaarachchi, M. Heino, T. Riihonen, and M. Valkama, “Full duplex radio/radar technology: The enabler for advanced joint communication and sensing,” IEEE Wireless Commun., vol. 28, no. 1, pp. 82–88, 2021.
  188. C. Baquero Barneto, T. Riihonen, M. Turunen, L. Anttila, M. Fleischer, K. Stadius, J. Ryynänen, and M. Valkama, “Full-duplex OFDM radar with LTE and 5G NR waveforms: Challenges, solutions, and measurements,” IEEE Transactions on Microwave Theory and Techniques, vol. 67, no. 10, pp. 4042–4054, 2019.
  189. K. E. Kolodziej, B. T. Perry, and J. S. Herd, “In-band full-duplex technology: Techniques and systems survey,” IEEE Transactions on Microwave Theory and Techniques, vol. 67, no. 7, pp. 3025–3041, 2019.
  190. S. Khaledian, F. Farzami, B. Smida, and D. Erricolo, “Inherent Self-Interference Cancellation for In-Band Full-Duplex Single-Antenna Systems,” IEEE Transactions on Microwave Theory and Techniques, vol. 66, no. 6, pp. 2842–2850, 2018.
  191. Y. Liu, P. Roblin, X. Quan, W. Pan, S. Shao, and Y. Tang, “A Full-Duplex Transceiver With Two-Stage Analog Cancellations for Multipath Self-Interference,” IEEE Transactions on Microwave Theory and Techniques, vol. 65, no. 12, pp. 5263–5273, 2017.
  192. P. Pascual Campo, L. Anttila, D. Korpi, and M. Valkama, “Cascaded spline-based models for complex nonlinear systems: Methods and applications,” IEEE Transactions on Signal Processing, vol. 69, pp. 370–384, 2021.
  193. A. Kiayani, M. Z. Waheed, L. Anttila, M. Abdelaziz, D. Korpi, V. Syrjälä, M. Kosunen, K. Stadius, J. Ryynänen, and M. Valkama, “Adaptive Nonlinear RF Cancellation for Improved Isolation in Simultaneous Transmit–Receive Systems,” IEEE Transactions on Microwave Theory and Techniques, vol. 66, no. 5, pp. 2299–2312, 2018.
  194. C. B. Barneto, T. Riihonen, S. D. Liyanaarachchi, M. Heino, N. González-Prelcic, and M. Valkama, “Beamformer design and optimization for joint communication and full-duplex sensing at mm-waves,” IEEE Trans. Commun., vol. 70, no. 12, pp. 8298–8312, 2022.
  195. M. A. Islam, G. C. Alexandropoulos, and B. Smida, “Integrated sensing and communication with millimeter wave full duplex hybrid beamforming,” in Proc. IEEE Int. Conf. Commun., 2022, pp. 4673–4678.
  196. S. D. Liyanaarachchi, C. Baquero Barneto, T. Riihonen, M. Heino, and M. Valkama, “Joint multi-user communication and MIMO radar through full-duplex hybrid beamforming,” in 2021 1st IEEE International Online Symposium on Joint Communications & Sensing (JC&S), 2021, pp. 1–5.
  197. C. B. Barneto, S. D. Liyanaarachchi, T. Riihonen, L. Anttila, and M. Valkama, “Multibeam design for joint communication and sensing in 5g new radio networks,” in ICC 2020 - 2020 IEEE International Conference on Communications (ICC), 2020, pp. 1–6.
  198. P. Pascual Campo, D. Korpi, L. Anttila, and M. Valkama, “Nonlinear digital cancellation in full-duplex devices using spline-based Hammerstein model,” in 2018 IEEE Globecom Workshops (GC Wkshps), 2018, pp. 1–7.
  199. D. Korpi, S. Venkatasubramanian, T. Riihonen, L. Anttila, S. Otewa, C. Icheln, K. Haneda, S. Tretyakov, M. Valkama, and R. Wichman, “Advanced self-interference cancellation and multiantenna techniques for full-duplex radios,” in 2013 Asilomar Conference on Signals, Systems and Computers, 2013, pp. 3–8.
  200. M. Bayraktar, N. González-Prelcic, and H. Chen, “Hybrid precoding and combining for mmWave full-duplex joint radar and communication systems under self-interference,” arXiv preprint arXiv:2311.14942, 2023.
  201. M. Bayraktar, C. Rusu, N. González-Prelcic, and H. Chen, “Self-interference aware codebook design for full-duplex joint sensing and communication systems at mmWave,” in Proc. IEEE Comput. Advances Multi-Sensor Adaptive Process. (CAMSAP), 2023, pp. 1–5.
  202. M. Braun, “OFDM radar algorithms in mobile communication networks,” Karlsruher Institutes für Technologie, 2014.
  203. S. Mercier, S. Bidon, D. Roque, and C. Enderli, “Comparison of correlation-based OFDM radar receivers,” IEEE Transactions on Aerospace and Electronic Systems, vol. 56, no. 6, pp. 4796–4813, 2020.
  204. Z. Wei, H. Qu, Y. Wang, X. Yuan, H. Wu, Y. Du, K. Han, N. Zhang, and Z. Feng, “Integrated sensing and communication signals toward 5G-A and 6G: A survey,” IEEE Internet of Things Journal, vol. 10, no. 13, pp. 11 068–11 092, 2023.
  205. Y. Liu, G. Liao, Y. Chen, J. Xu, and Y. Yin, “Super-resolution range and velocity estimations with OFDM integrated radar and communications waveform,” IEEE Transactions on Vehicular Technology, vol. 69, no. 10, pp. 11 659–11 672, 2020.
  206. J. B. Sanson, P. M. Tomé, D. Castanheira, A. Gameiro, and P. P. Monteiro, “High-resolution delay-Doppler estimation using received communication signals for OFDM radar-communication system,” IEEE Transactions on Vehicular Technology, vol. 69, no. 11, pp. 13 112–13 123, 2020.
  207. G. Hakobyan and B. Yang, “A novel intercarrier-interference free signal processing scheme for OFDM radar,” IEEE Transactions on Vehicular Technology, vol. 67, no. 6, pp. 5158–5167, 2017.
  208. M. F. Keskin, H. Wymeersch, and V. Koivunen, “Monostatic sensing with OFDM under phase noise: From mitigation to exploitation,” IEEE Trans. Signal Process., vol. 71, pp. 1363–1378, 2023.
  209. A. Demir, “Computing timing jitter from phase noise spectra for oscillators and phase-locked loops with white and 1/f1𝑓1/f1 / italic_f noise,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 53, no. 9, pp. 1869–1884, Sep. 2006.
  210. M. C. Budge and M. P. Burt, “Range correlation effects in radars,” in The Record of the 1993 IEEE National Radar Conference, April 1993, pp. 212–216.
  211. M. Gerstmair, A. Melzer, A. Onic, and M. Huemer, “On the safe road toward autonomous driving: Phase noise monitoring in radar sensors for functional safety compliance,” IEEE Signal Processing Magazine, vol. 36, no. 5, pp. 60–70, 2019.
  212. C. Aydogdu, M. F. Keskin, G. K. Carvajal, O. Eriksson, H. Hellsten, H. Herbertsson, E. Nilsson, M. Rydstrom, K. Vanas, and H. Wymeersch, “Radar interference mitigation for automated driving: Exploring proactive strategies,” IEEE Signal Processing Magazine, vol. 37, no. 4, pp. 72–84, 2020.
  213. A. R. Chiriyath, B. Paul, and D. W. Bliss, “Joint radar-communications information bounds with clutter: The phase noise menace,” in 2016 IEEE Radar Conference (RadarConf), May 2016, pp. 1–6.
  214. D. Dardari, P. Closas, and P. M. Djuric, “Indoor tracking: Theory, methods, and technologies,” IEEE Transactions on Vehicular Technology, vol. 64, no. 4, pp. 1263–1278, April 2015.
  215. G. Pasolini, A. Guerra, F. Guidi, N. Decarli, and D. Dardari, “Crowd-based cognitive perception of the physical world: Towards the Internet of senses,” Sensors, vol. 20, no. 9, p. 2437, 2020.
  216. F. Guidi, A. Guerra, and D. Dardari, “Personal mobile radars with millimeter-wave massive arrays for indoor mapping,” IEEE Transactions on Mobile Computing, vol. 15, no. 6, pp. 1471–1484, 2016.
  217. M. Lotti, G. Pasolini, A. Guerra, F. Guidi, R. D’Errico, and D. Dardari, “Radio SLAM for 6G systems at THz frequencies: Design and experimental validation,” IEEE Journal of Selected Topics in Signal Processing, vol. 17, no. 4, pp. 834–849, July 2023.
  218. W. Hess, D. Kohler, H. Rapp, and D. Andor, “Real-time loop closure in 2D LIDAR SLAM,” in 2016 IEEE International Conference on Robotics and Automation (ICRA), 2016, pp. 1271–1278.
  219. P. Checchin, F. Gérossier, C. Blanc, R. Chapuis, and L. Trassoudaine, “Radar scan matching SLAM using the Fourier-Mellin transform,” in Field and Service Robotics.   Springer, 2010, pp. 151–161.
  220. H. Sarieddeen, N. Saeed, T. Y. Al-Naffouri, and M.-S. Alouini, “Next generation terahertz communications: A rendezvous of sensing, imaging, and localization,” IEEE Commun. Mag., vol. 58, no. 5, pp. 69–75, 2020.
  221. E. Bjornson, L. Sanguinetti, H. Wymeersch, J. Hoydis, and T. L. Marzetta, “Massive MIMO is a reality. what is next?: Five promising research directions for antenna arrays,” Digital Signal Processing, vol. 94, pp. 3–20, 2019, special Issue on Source Localization in Massive MIMO. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1051200419300776
  222. Z. Wang, J. Zhang, H. Du, D. Niyato, S. Cui, B. Ai, M. Debbah, K. B. Letaief, and H. V. Poor, “A tutorial on extremely large-scale MIMO for 6G: Fundamentals, signal processing, and applications,” 2023.
  223. E. Björnson, Y. C. Eldar, E. G. Larsson, A. Lozano, and H. V. Poor, “Twenty-five years of signal processing advances for multiantenna communications: From theory to mainstream technology,” IEEE Signal Processing Magazine, vol. 40, no. 4, pp. 107–117, 2023.
  224. C. Huang, S. Hu, G. C. Alexandropoulos, A. Zappone, C. Yuen, R. Zhang, M. D. Renzo, and M. Debbah, “Holographic MIMO surfaces for 6G wireless networks: Opportunities, challenges, and trends,” IEEE Wireless Communications, vol. 27, no. 5, pp. 118–125, 2020.
  225. S. Hu, F. Rusek, and O. Edfors, “Beyond massive MIMO: The potential of positioning with large intelligent surfaces,” IEEE Transactions on Signal Processing, vol. 66, no. 7, pp. 1761–1774, 2018.
  226. D. Dardari, “Communicating with large intelligent surfaces: Fundamental limits and models,” IEEE Journal on Selected Areas in Communications, vol. 38, no. 11, pp. 2526–2537, Nov 2020.
  227. N. Shlezinger, G. C. Alexandropoulos, M. F. Imani, Y. C. Eldar, and D. R. Smith, “Dynamic metasurface antennas for 6G extreme massive MIMO communications,” IEEE Wireless Communications, vol. 28, no. 2, pp. 106–113, 2021.
  228. A. Elzanaty, A. Guerra, F. Guidi, D. Dardari, and M.-S. Alouini, “Towards 6G holographic localization: Enabling technologies and perspectives,” IEEE Internet of Things Magazine, pp. 1–7, 2023.
  229. K. T. Selvan and R. Janaswamy, “Fraunhofer and Fresnel distances: Unified derivation for aperture antennas,” IEEE Antennas and Propagation Magazine, vol. 59, no. 4, pp. 12–15, 2017.
  230. D. Dardari and N. Decarli, “Holographic communication using intelligent surfaces,” IEEE Communications Magazine, vol. 59, no. 6, pp. 35–41, June 2021.
  231. P. Nepa and A. Buffi, “Near-field-focused microwave antennas: Near-field shaping and implementation,” IEEE Antennas and Propagation Magazine, vol. 59, no. 3, pp. 42–53, 2017.
  232. H. Zhang, N. Shlezinger, F. Guidi, D. Dardari, and Y. C. Eldar, “6G wireless communications: From far-field beam steering to near-field beam focusing,” IEEE Comm. Magazine, pp. 1–6, Apr 2023.
  233. D. A. B. Miller, “Communicating with waves between volumes: evaluating orthogonal spatial channels and limits on coupling strengths,” Appl. Opt., vol. 39, no. 11, pp. 1681–1699, Apr 2000. [Online]. Available: http://ao.osa.org/abstract.cfm?URI=ao-39-11-1681
  234. N. Decarli and D. Dardari, “Communication modes with large intelligent surfaces in the near field,” IEEE Access, vol. 9, pp. 165 648–165 666, 2021.
  235. A. Guerra, F. Guidi, and D. Dardari, “Single-anchor localization and orientation performance limits using massive arrays: MIMO vs. beamforming,” IEEE Transactions on Wireless Communications, vol. 17, no. 8, pp. 5241–5255, Aug 2018.
  236. F. Guidi and D. Dardari, “Radio positioning with EM processing of the spherical wavefront,” IEEE Transactions on Wireless Communications, vol. 20, no. 6, pp. 3571–3586, June 2021.
  237. Z. Wang, X. Mu, and Y. Liu, “Near-field integrated sensing and communications,” IEEE Communications Letters, vol. 27, no. 8, pp. 2048–2052, 2023.
  238. S. K. Dehkordi, L. Pucci, P. Jung, A. Giorgetti, E. Paolini, and G. Caire, “Multi-static Parameter Estimation in the Near/Far Field Beam Space for Integrated Sensing and Communication Applications,” arXiv e-prints, p. arXiv:2309.14778, Sep. 2023.
  239. Z. Yuan, J. Zhang, Y. Ji, G. F. Pedersen, and W. Fan, “Spatial non-stationary near-field channel modeling and validation for massive MIMO systems,” IEEE Transactions on Antennas and Propagation, vol. 71, no. 1, pp. 921–933, 2023.
  240. M. Cui and L. Dai, “Channel estimation for extremely large-scale MIMO: Far-field or near-field?” IEEE Transactions on Communications, vol. 70, no. 4, pp. 2663–2677, 2022.
  241. Ö. T. Demir, E. Björnson, L. Sanguinetti et al., “Foundations of user-centric cell-free massive MIMO,” Foundations and Trends® in Signal Processing, vol. 14, no. 3-4, pp. 162–472, 2021.
  242. D. Löschenbrand, M. Hofer, L. Bernadó, S. Zelenbaba, and T. Zemen, “Towards cell-free massive MIMO: A measurement-based analysis,” IEEE Access, vol. 10, pp. 89 232–89 247, 2022.
  243. Z. H. Shaik, E. Björnson, and E. G. Larsson, “MMSE-optimal sequential processing for cell-free massive MIMO with radio stripes,” IEEE Transactions on Communications, vol. 69, no. 11, pp. 7775–7789, 2021.
  244. S. Elhoushy, M. Ibrahim, and W. Hamouda, “Cell-free massive MIMO: A survey,” IEEE Communications Surveys & Tutorials, vol. 24, no. 1, pp. 492–523, 2022.
  245. E. G. Larsson and J. Vieira, “Phase calibration of distributed antenna arrays,” IEEE Communications Letters, vol. 27, no. 6, pp. 1619–1623, 2023.
  246. A. Sakhnini, S. De Bast, M. Guenach, A. Bourdoux, H. Sahli, and S. Pollin, “Near-field coherent radar sensing using a massive MIMO communication testbed,” IEEE Transactions on Wireless Communications, vol. 21, no. 8, pp. 6256–6270, 2022.
  247. H. Chen, M. F. Keskin, A. Sakhnini, N. Decarli, S. Pollin, D. Dardari, and H. Wymeersch, “6G localization and sensing in the near field: Fundamentals, opportunities, and challenges,” arXiv preprint arXiv:2308.15799, 2023.
  248. M. E. Leinonen et al., “Initial radio models and analysis towards ultra-high data rate links in 6G,” Hexa-X project Deliverable D2.2, 2021. [Online]. Available: https://hexa-x.eu/deliverables/
  249. G. Callebaut, L. Liu, T. Eriksson, L. Van der Perre, O. Edfors, and C. Fager, “6G radio testbeds: Requirements, trends, and approaches,” arXiv preprint arXiv:2309.06911, 2023.
  250. M. Manzoni, D. Tagliaferri, S. Tebaldini, M. Mizmizi, A. V. Monti-Guarnieri, C. M. Prati, and U. Spagnolini, “Wavefield networked sensing: Principles, algorithms and applications,” arXiv preprint arXiv:2305.10333, 2023.
  251. D. Dardari, N. Decarli, A. Guerra, and F. Guidi, “LOS/NLOS near-field localization with a large reconfigurable intelligent surface,” IEEE Transactions on Wireless Communications, vol. 21, no. 6, pp. 4282–4294, June 2022.
  252. Z. Abu-Shaban, K. Keykhosravi, M. F. Keskin, G. C. Alexandropoulos, G. Seco-Granados, and H. Wymeersch, “Near-field localization with a reconfigurable intelligent surface acting as lens,” in ICC 2021 - IEEE International Conference on Communications, 2021, pp. 1–6.
  253. O. Rinchi, A. Elzanaty, and M.-S. Alouini, “Compressive near-field localization for multipath RIS-aided environments,” IEEE Communications Letters, vol. 26, no. 6, pp. 1268–1272, 2022.
  254. C. Ozturk, M. F. Keskin, H. Wymeersch, and S. Gezici, “RIS-aided near-field localization under phase-dependent amplitude variations,” IEEE Transactions on Wireless Communications, vol. 22, no. 8, pp. 5550–5566, 2023.
  255. M. Rahal, B. Denis, K. Keykhosravi, B. Uguen, and H. Wymeersch, “RIS-enabled localization continuity under near-field conditions,” in 2021 IEEE 22nd International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), 2021, pp. 436–440.
  256. M. Rahal, B. Denis, K. Keykhosravi, M. F. Keskin, B. Uguen, and H. Wymeersch, “Constrained RIS phase profile optimization and time sharing for near-field localization,” in 2022 IEEE 95th Vehicular Technology Conference: (VTC2022-Spring), 2022, pp. 1–6.
  257. C. Ozturk, M. F. Keskin, V. Sciancalepore, H. Wymeersch, and S. Gezici, “RIS-aided localization under pixel failures,” arXiv preprint arXiv:2302.04436, 2023.
  258. S. Buzzi, E. Grossi, M. Lops, and L. Venturino, “Foundations of MIMO radar detection aided by reconfigurable intelligent surfaces,” IEEE Transactions on Signal Processing, vol. 70, pp. 1749–1763, 2022.
  259. E. Grossi, H. Taremizadeh, and L. Venturino, “Radar target detection and localization aided by an active reconfigurable intelligent surface,” IEEE Signal Processing Letters, pp. 1–5, 2023.
  260. S. Buzzi, E. Grossi, M. Lops, and L. Venturino, “Radar target detection aided by reconfigurable intelligent surfaces,” IEEE Signal Processing Letters, vol. 28, pp. 1315–1319, 2021.
  261. G. Torcolacci, A. Guerra, H. Zhang, F. Guidi, Q. Yang, Y. C. Eldar, and D. Dardari, “Holographic imaging with XL-MIMO and RIS: Illumination and reflection design,” 2023. [Online]. Available: https://arxiv.org/abs/2312.11102
  262. M. Giordani, M. Polese, A. Roy, D. Castor, and M. Zorzi, “A tutorial on beam management for 3GPP NR at mmWave frequencies,” IEEE Communications Surveys & Tutorials, vol. 21, no. 1, pp. 173–196, 2019.
  263. M. Polese, J. M. Jornet, T. Melodia, and M. Zorzi, “Toward end-to-end, full-stack 6G terahertz networks,” IEEE Communications Magazine, vol. 58, no. 11, pp. 48–54, 2020.
  264. A. Narayanan, E. Ramadan, J. Carpenter, Q. Liu, Y. Liu, F. Qian, and Z.-L. Zhang, “A first look at commercial 5G performance on smartphones,” in Proceedings of The Web Conference 2020, ser. WWW ’20.   New York, NY, USA: Association for Computing Machinery, 2020, p. 894–905. [Online]. Available: https://doi.org/10.1145/3366423.3380169
  265. S. Hur, T. Kim, D. J. Love, J. V. Krogmeier, T. A. Thomas, and A. Ghosh, “Millimeter wave beamforming for wireless backhaul and access in small cell networks,” IEEE Transactions on Communications, vol. 61, no. 10, pp. 4391–4403, 2013.
  266. J. Wang, Z. Lan, C.-W. Pyo, T. Baykas, C.-S. Sum, M. A. Rahman, R. Funada, F. Kojima, I. Lakkis, H. Harada, and S. Kato, “Beam codebook based beamforming protocol for multi-Gbps millimeter-wave WPAN systems,” in GLOBECOM 2009 - 2009 IEEE Global Telecommunications Conference, 2009, pp. 1–6.
  267. N. Garcia, H. Wymeersch, E. G. Ström, and D. Slock, “Location-aided mm-wave channel estimation for vehicular communication,” in 2016 IEEE 17th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), 2016, pp. 1–5.
  268. A. Ali, N. González-Prelcic, and A. Ghosh, “Millimeter wave V2I beam-training using base-station mounted radar,” in 2019 IEEE Radar Conference (RadarConf), 2019, pp. 1–5.
  269. Y. Lu, M. Koivisto, J. Talvitie, M. Valkama, and E. S. Lohan, “Positioning-aided 3D beamforming for enhanced communications in mmWave mobile networks,” IEEE Access, vol. 8, pp. 55 513–55 525, 2020.
  270. K. Satyanarayana, M. El-Hajjar, A. A. M. Mourad, and L. Hanzo, “Deep learning aided fingerprint-based beam alignment for mmWave vehicular communication,” IEEE Transactions on Vehicular Technology, vol. 68, no. 11, pp. 10 858–10 871, 2019.
  271. S. Park, A. Ali, N. González-Prelcic, and R. W. Heath, “Spatial channel covariance estimation for hybrid architectures based on tensor decompositions,” IEEE Transactions on Wireless Communications, vol. 19, no. 2, pp. 1084–1097, 2020.
  272. A. Graff, A. Ali, and N. González-Prelcic, “Measuring radar and communication congruence at millimeter wave frequencies,” in 2019 53rd Asilomar Conference on Signals, Systems, and Computers, 2019, pp. 925–929.
  273. A. Ali, N. González-Prelcic, and A. Ghosh, “Passive radar at the roadside unit to configure millimeter wave vehicle-to-infrastructure links,” IEEE Trans. Veh. Technol., vol. 69, pp. 14 903–14 917, 2020.
  274. Y. Chen, A. Graff, N. González–Prelcic, and T. Shimizu, “Radar aided mmWave vehicle-to-infrastructure link configuration using deep learning,” in 2021 IEEE Global Communications Conference (GLOBECOM), 2021, pp. 01–06.
  275. W. Yuan, F. Liu, C. Masouros, J. Yuan, D. W. K. Ng, and N. González-Prelcic, “Bayesian predictive beamforming for vehicular networks: A low-overhead joint radar-communication approach,” IEEE Trans. Wireless Commun., vol. 20, pp. 1442–1456, 2021.
  276. Y. Tian, G. Pan, and M.-S. Alouini, “Applying deep-learning-based computer vision to wireless communications: Methodologies, opportunities, and challenges,” IEEE Open J. Commun. Soc., vol. 2, pp. 132–143, 2021.
  277. W. Xu, F. Gao, S. Jin, and A. Alkhateeb, “3D scene-based beam selection for mmWave communications,” IEEE Wireless Commun. Lett., vol. 9, pp. 1850–1854, 2020.
  278. M. Alrabeiah, A. Hredzak, Z. Liu, and A. Alkhateeb, “ViWi: A deep learning dataset framework for vision-aided wireless communications,” in Proc. IEEE 91st Veh. Technol. Conf. (VTC2020-Spring), 2020, pp. 1–5.
  279. W. Xu, F. Gao, X. Tao, J. Zhang, and A. Alkhateeb, “Computer vision aided mmWave beam alignment in V2X communications,” IEEE Trans. Wireless Commun., vol. 22, pp. 2699–2714, 2023.
  280. M. Zecchin, M. B. Mashhadi, M. Jankowski, D. Gunduz, M. Kountouris, and D. Gesbert, “LIDAR and position-aided mmWave beam selection with non-local CNNs and curriculum training,” IEEE Trans. Veh. Technol., vol. 71, pp. 2979–2990, 2022.
  281. A. Ali, J. Mo, B. L. Ng, V. Va, and J. C. Zhang, “Orientation-assisted beam management for beyond 5G systems,” IEEE Access, vol. 9, pp. 51 832–51 846, 2021.
  282. M. B. Mashhadi, M. Jankowski, T.-Y. Tung, S. Kobus, and D. Gunduz, “Federated mmWave beam selection utilizing LIDAR data,” IEEE Wireless Commun. Lett., vol. 10, pp. 2269–2273, 2021.
  283. M. Dias, A. Klautau, N. González-Prelcic, and R. W. Heath, “Position and LIDAR-aided mmWave beam selection using deep learning,” in Proc. IEEE 20th Int. Workshop Signal Process. Advances Wireless Commun. (SPAWC), 2019, pp. 1–5.
  284. W. Xu, F. Gao, J. Zhang, X. Tao, and A. Alkhateeb, “Deep learning based channel covariance matrix estimation with user location and scene images,” IEEE Trans. Commun., vol. 69, pp. 8145–8158, 2021.
  285. B. Salehi, G. Reus-Muns, D. Roy, Z. Wang, T. Jian, J. Dy, S. Ioannidis, and K. Chowdhury, “Deep learning on multimodal sensor data at the wireless edge for vehicular network,” IEEE Trans. Veh. Technol., vol. 71, pp. 7639–7655, 2022.
  286. T. Zhang, J. Liu, and F. Gao, “Vision aided beam tracking and frequency handoff for mmWave communications,” in Proc. IEEE Int. Conf. Comput. Commun. Workshops (INFOCOM WKSHPS), 2022, pp. 1–2.
  287. T. S. Rappaport, G. R. MacCartney, M. K. Samimi, and S. Sun, “Wideband millimeter-wave propagation measurements and channel models for future wireless communication system design,” IEEE Transactions on Communications, vol. 63, no. 9, pp. 3029–3056, 2015.
  288. A. Karttunen, A. F. Molisch, S. Hur, J. Park, and C. J. Zhang, “Spatially consistent street-by-street path loss model for 28-GHz channels in micro cell urban environments,” IEEE Transactions on Wireless Communications, vol. 16, no. 11, pp. 7538–7550, Nov. 2017.
  289. M. Boban, D. Dupleich, N. Iqbal, J. Luo, C. Schneider, R. Müller, Z. Yu, D. Steer, T. Jämsä, J. Li, and R. S. Thomä, “Multi-band vehicle-to-vehicle channel characterization in the presence of vehicle blockage,” IEEE Access, vol. 7, pp. 9724–9735, 2019.
  290. G. R. MacCartney, S. Deng, S. Sun, and T. S. Rappaport, “Millimeter-wave human blockage at 73 GHz with a simple double knife-edge diffraction model and extension for directional antennas,” in 2016 IEEE 84th Vehicular Technology Conference (VTC-Fall), Sep. 2016, pp. 1–6.
  291. V. Raghavan, L. Akhoondzadeh-Asl, V. Podshivalov, J. Hulten, M. A. Tassoudji, O. H. Koymen, A. Sampath, and J. Li, “Statistical blockage modeling and robustness of beamforming in millimeter-wave systems,” IEEE Transactions on Microwave Theory and Techniques, vol. 67, no. 7, pp. 3010–3024, 2019.
  292. Y. Oguma, R. Arai, T. Nishio, K. Yamamoto, and M. Morikura, “Proactive base station selection based on human blockage prediction using RGB-D cameras for mmWave communications,” in Proc. IEEE Global Commun. Conf. (GLOBECOM), 2015, pp. 1–6.
  293. M. Alrabeiah, A. Hredzak, and A. Alkhateeb, “Millimeter wave base stations with cameras: Vision-aided beam and blockage prediction,” in Proc. IEEE 91st Veh. Technol. Conf. (VTC2020-Spring), 2020, pp. 1–5.
  294. G. Charan, M. Alrabeiah, and A. Alkhateeb, “Vision-aided 6G wireless communications: Blockage prediction and proactive handoff,” IEEE Trans. Veh. Technol., vol. 70, pp. 10 193–10 208, 2021.
  295. G. Reus-Muns, B. Salehi, D. Roy, T. Jian, Z. Wang, J. Dy, S. Ioannidis, and K. Chowdhury, “Deep learning on visual and location data for V2I mmWave beamforming,” in Proc. 17th Int. Conf. Mobility, Sens., Netw. (MSN), 2021, pp. 559–566.
  296. D. Marasinghe, N. Rajatheva, and M. Latva-aho, “LiDAR aided human blockage prediction for 6G,” in Proc. IEEE Global Commun. Conf. Workshops (GC Wkshps), 2021, pp. 1–6.
  297. M. Nerini and B. Clerckx, “Overhead-free blockage detection and precoding through physics-based graph neural networks: LIDAR data meets ray tracing,” IEEE Wireless Commun. Lett., vol. 12, pp. 565–569, 2023.
  298. S. Wu, C. Chakrabarti, and A. Alkhateeb, “Proactively predicting dynamic 6G link blockages using LiDAR and in-band signatures,” IEEE Open J. Commun. Soc., vol. 4, pp. 392–412, 2023.
  299. U. Demirhan and A. Alkhateeb, “Radar aided proactive blockage prediction in real-world millimeter wave systems,” in Proc. IEEE Int. Conf. Commun., 2022, pp. 4547–4552.
Citations (16)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 4 likes.

Upgrade to Pro to view all of the tweets about this paper: