Infinite free resolutions over numerical semigroup algebras via specialization (2405.01700v1)
Abstract: Each numerical semigroup $S$ with smallest positive element $m$ corresponds to an integer point in a polyhedral cone $C_m$, known as the Kunz cone. The faces of $C_m$ form a stratification of numerical semigroups that has been shown to respect a number of algebraic properties of $S$, including the combinatorial structure of the minimal free resolution of the defining toric ideal $I_S$. In this work, we prove that the structure of the infinite free resolution of the ground field $\Bbbk$ over the semigroup algebra $\Bbbk[S]$ also respects this stratification, yielding a new combinatorial approach to classifying homological properties like Golodness and rationality of the poincare series in this setting. Additionally, we give a complete classification of such resolutions in the special case $m = 4$, and demonstrate that the associated graded algebras do not generally respect the same stratification.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.