Gluon Mass Generation from Renormalons and Resurgence (2405.01639v1)
Abstract: We establish a link between the concepts of infrared renormalons, infrared fixed point, and dynamical nonperturbative mass generation of gluons in pure Yang-Mills theories. By utilizing recent results in the resurgent analysis of renormalons through non-linear ordinary differential equations, we develop a new description for the gluon propagator, thereby realizing the Schwinger mechanism. Specifically, this approach leads to a nonperturbative, dynamic mass generation for Yang-Mills gauge bosons in the deep infrared region, a phenomenon closely associated with color confinement. Furthermore, we present arguments about the limit of applicability of the Borel-Ecalle resummation of the renormalons by comparing it with the Kallen-Lehman representation of the gluon propagator.
- G. ’t Hooft, “Can We Make Sense Out of Quantum Chromodynamics?”, Subnucl. Ser. 15 (1979) 943.
- M. Beneke, “Renormalons”, Phys. Rept. 317 (1999) 1–142, arXiv:hep-ph/9807443.
- G. Abbas, B. Ananthanarayan, I. Caprini, and J. Fischer, “Perturbative expansion of the QCD Adler function improved by renormalization-group summation and analytic continuation in the Borel plane”, Phys. Rev. D 87 no. 1, (2013) 014008, arXiv:1211.4316 [hep-ph].
- A. Maiezza and J. C. Vasquez, “Renormalons in a general Quantum Field Theory”, Annals Phys. 394 (2018) 84–97, arXiv:1802.06022 [hep-th].
- G. Cvetič, “Renormalon-based resummation for QCD observables”, Nucl. Part. Phys. Proc. 309-311 (2020) 87–92, arXiv:1909.13593 [hep-ph].
- M. Correa, M. Loewe, D. Valenzuela, and R. Zamora, “Magnetic renormalons in a scalar self interacting λϕ4𝜆superscriptitalic-ϕ4\lambda\phi^{4}italic_λ italic_ϕ start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT theory”, Phys. Rev. D 99 no. 9, (2019) 096024, arXiv:1901.06426 [hep-ph].
- D. Boito and I. Caprini, “Renormalons and hyperasymptotics in QCD”, Eur. Phys. J. ST 230 no. 12, (2021) 2561–2563.
- M. Loewe, L. Monje, and R. Zamora, “Thermomagnetic renormalons in a scalar self-interacting λ𝜆\lambdaitalic_λϕitalic-ϕ\phiitalic_ϕ4 theory”, Phys. Rev. D 104 no. 1, (2021) 016020, arXiv:2105.01156 [hep-ph].
- C. Ayala, G. Cvetic, and D. Teca, “Determination of perturbative QCD coupling from ALEPH τ𝜏\tauitalic_τ decay data using pinched Borel–Laplace and Finite Energy Sum Rules”, Eur. Phys. J. C 81 no. 10, (2021) 930, arXiv:2105.00356 [hep-ph].
- M. Loewe and R. Zamora, “Renormalons in a scalar self-interacting theory: Thermal, thermomagnetic, and thermoelectric corrections for all values of the temperature”, Phys. Rev. D 105 no. 7, (2022) 076011, arXiv:2202.08873 [hep-ph].
- C. Ayala, G. Cvetic, and D. Teca, “Borel–Laplace sum rules with τ𝜏\tauitalic_τ decay data, using OPE with improved anomalous dimensions”, J. Phys. G 50 no. 4, (2023) 045004, arXiv:2206.05631 [hep-ph].
- I. Caprini, “Revisiting the convergence of the perturbative QCD expansions based on conformal mapping of the Borel plane”, Phys. Rev. D 108 no. 11, (2023) 114031, arXiv:2312.07143 [hep-ph].
- G. Parisi, “The Borel Transform and the Renormalization Group”, Phys. Rept. 49 (1979) 215–219.
- O. Costin International Mathematics Research Notices 1995 no. 8, (1995) 377. https://doi.org/10.1155/s1073792895000286.
- O. Costin, “On borel summation and stokes phenomena for rank- 1111 nonlinear systems of ordinary differential equations”, Duke Math. J. 93 no. 2, (06, 1998) 289–344. https://doi.org/10.1215/S0012-7094-98-09311-5.
- O. Costin, “Asymptotics and borel summability. monographs and surveys in pure and applied mathematics. chapman and hall/crc (2008)”, Monographs and Surveys in Pure and Applied Mathematics (2008) .
- J. Bersini, A. Maiezza, and J. C. Vasquez, “Resurgence of the Renormalization Group Equation”, Annals Phys. 415 (2020) 168126, arXiv:1910.14507 [hep-th].
- A. Maiezza and J. C. Vasquez, “Resurgence of the QCD Adler function”, Phys. Lett. B 817 (2021) 136338, arXiv:2104.03095 [hep-ph].
- A. Maiezza and J. C. Vasquez, “The QCD Adler Function and the Muon g −-- 2 Anomaly from Renormalons”, Symmetry 14 no. 9, (2022) 1878, arXiv:2111.06792 [hep-ph].
- I. Caprini, “Resurgent representation of the Adler function in the large-β𝛽\betaitalic_β0 approximation of QCD”, Phys. Rev. D 107 no. 7, (2023) 074035, arXiv:2304.03504 [hep-ph].
- J. Écalle, “Six lectures on transseries, analysable functions and the constructive proof of dulac’s conjecture”,. https://doi.org/10.1007/978-94-015-8238-4_3.
- D. Sauzin, “Resurgent functions and splitting problems”, 2007.
- D. Dorigoni, “An Introduction to Resurgence, Trans-Series and Alien Calculus”, Annals Phys. 409 (2019) 167914, arXiv:1411.3585 [hep-th].
- I. Aniceto, G. Basar, and R. Schiappa, “A Primer on Resurgent Transseries and Their Asymptotics”, Phys. Rept. 809 (2019) 1–135, arXiv:1802.10441 [hep-th].
- G. V. Dunne and M. Ünsal, “Generating nonperturbative physics from perturbation theory”, Phys. Rev. D 89 no. 4, (2014) 041701, arXiv:1306.4405 [hep-th].
- M. Borinsky, “Renormalized asymptotic enumeration of Feynman diagrams”, Annals Phys. 385 (2017) 95–135, arXiv:1703.00840 [hep-th].
- A. Maiezza and J. C. Vasquez, “Non-local Lagrangians from Renormalons and Analyzable Functions”, Annals Phys. 407 (2019) 78–91, arXiv:1902.05847 [hep-th].
- P. J. Clavier, “Borel-Ecalle resummation of a two-point function”, arXiv:1912.03237 [math-ph].
- M. Borinsky and G. V. Dunne, “Non-Perturbative Completion of Hopf-Algebraic Dyson-Schwinger Equations”, arXiv:2005.04265 [hep-th].
- T. Fujimori, M. Honda, S. Kamata, T. Misumi, N. Sakai, and T. Yoda, “Quantum phase transition and resurgence: Lessons from three-dimensional 𝒩=4𝒩4\mathcal{N}=4caligraphic_N = 4 supersymmetric quantum electrodynamics”, PTEP 2021 no. 10, (2021) 103B04, arXiv:2103.13654 [hep-th].
- M. Borinsky and D. Broadhurst, “Resonant resurgent asymptotics from quantum field theory”, Nucl. Phys. B 981 (2022) 115861, arXiv:2202.01513 [hep-th].
- E. Laenen, C. Marinissen, and M. Vonk, “Resurgence analysis of the Adler function at order 1/Nf21superscriptsubscript𝑁𝑓21/N_{f}^{2}1 / italic_N start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT”, arXiv:2302.13715 [hep-ph].
- J. S. Schwinger, “Gauge Invariance and Mass”, Phys. Rev. 125 (1962) 397–398.
- J. S. Schwinger, “Gauge Invariance and Mass. 2.”, Phys. Rev. 128 (1962) 2425–2429.
- I. L. Bogolubsky, E. M. Ilgenfritz, M. Muller-Preussker, and A. Sternbeck, “The Landau gauge gluon and ghost propagators in 4D SU(3) gluodynamics in large lattice volumes”, PoS LATTICE2007 (2007) 290, arXiv:0710.1968 [hep-lat].
- A. G. Duarte, O. Oliveira, and P. J. Silva, “Lattice Gluon and Ghost Propagators, and the Strong Coupling in Pure SU(3) Yang-Mills Theory: Finite Lattice Spacing and Volume Effects”, Phys. Rev. D 94 no. 1, (2016) 014502, arXiv:1605.00594 [hep-lat].
- A. C. Aguilar, A. A. Natale, and P. S. R. da Silva, “Relating a gluon mass scale to an infrared fixed point in pure gauge qcd”, Phys. Rev. Lett. 90 (Apr, 2003) 152001. https://link.aps.org/doi/10.1103/PhysRevLett.90.152001.
- J. M. Cornwall, “Dynamical mass generation in continuum quantum chromodynamics”, Phys. Rev. D 26 (Sep, 1982) 1453–1478. https://link.aps.org/doi/10.1103/PhysRevD.26.1453.
- A. C. Aguilar and A. A. Natale, “A Dynamical gluon mass solution in a coupled system of the Schwinger-Dyson equations”, JHEP 08 (2004) 057, arXiv:hep-ph/0408254.
- A. C. Aguilar and A. A. Natale, “A Dynamical gluon mass solution in Mandelstam’s approximation”, Int. J. Mod. Phys. A 20 (2005) 7613–7632, arXiv:hep-ph/0405024.
- A. C. Aguilar, D. Binosi, and J. Papavassiliou, “The Gluon Mass Generation Mechanism: A Concise Primer”, Front. Phys. (Beijing) 11 no. 2, (2016) 111203, arXiv:1511.08361 [hep-ph].
- A. Maiezza and J. C. Vasquez, “Resurgence and self-completion in renormalized gauge theories”, International Journal of Modern Physics A (11, 2024) , arXiv:2311.10393 [hep-th]. https://doi.org/10.1142/S0217751X24500258.
- S. Coleman, Aspects of Symmetry: Selected Erice Lectures. Cambridge University Press, 1985.
- J. M. Cornwall and J. Papavassiliou, “Gauge-invariant three-gluon vertex in qcd”, Phys. Rev. D 40 (Nov, 1989) 3474–3485. https://link.aps.org/doi/10.1103/PhysRevD.40.3474.
- M. Frasca, “Infrared Gluon and Ghost Propagators”, Phys. Lett. B 670 (2008) 73–77, arXiv:0709.2042 [hep-th].
- A. Weber, “The Infrared fixed point of Landau gauge Yang-Mills theory: A renormalization group analysis”, J. Phys. Conf. Ser. 378 (2012) 012042, arXiv:1205.0491 [hep-th].
- P.-H. Balduf, “Dyson–Schwinger Equations in Minimal Subtraction”, Annales de l’Institut Henri Poincaré D (2023) . https://ems.press/journals/aihpd/articles/10239304.
- D. Kreimer and K. Yeats, “An Etude in Non-Linear Dyson–Schwinger Equations”, Nuclear Physics B - Proceedings Supplements 160 (2006) 116–121. http://www.sciencedirect.com/science/article/pii/S0920563206006347. Proceedings of the 8th DESY Workshop on Elementary Particle Theory.
- D. Kreimer and K. Yeats, “Recursion and Growth Estimates in Renormalizable Quantum Field Theory”, Communications in Mathematical Physics 279 no. 2, (2008) 401–427, hep-th/0612179. https://doi.org/10.1007/s00220-008-0431-7.
- G. van Baalen, D. Kreimer, D. Uminsky, and K. Yeats, “The QED beta-function from global solutions to Dyson-Schwinger equations”, Annals Phys. 324 (2009) 205–219, arXiv:0805.0826 [hep-th].
- K. Yeats, “Growth Estimates for Dyson-Schwinger Equations”, arXiv:0810.2249 [math-ph]. http://arxiv.org/abs/0810.2249. arXiv:0810.2249 [math-ph].
- Aspects of Mathematics E38. Vieweg Verlag, Wiesbaden, 2008. http://preprints.ihes.fr/2006/P/P-06-23.pdf.
- G. van Baalen, D. Kreimer, D. Uminsky, and K. Yeats, “The QCD beta-function from global solutions to Dyson-Schwinger equations”, Annals Phys. 325 (2010) 300–324, arXiv:0906.1754 [hep-th].
- L. Klaczynski and D. Kreimer, “Avoidance of a Landau Pole by Flat Contributions in QED”, Annals Phys. 344 (2014) 213–231, arXiv:1309.5061 [hep-th].
- D. J. Broadhurst, “Large N expansion of QED: Asymptotic photon propagator and contributions to the muon anomaly, for any number of loops”, Z. Phys. C 58 (1993) 339–346.
- 1976.
- I. L. Bogolubsky, E. M. Ilgenfritz, M. Muller-Preussker, and A. Sternbeck, “Lattice gluodynamics computation of Landau gauge Green’s functions in the deep infrared”, Phys. Lett. B 676 (2009) 69–73, arXiv:0901.0736 [hep-lat].
- C. Ayala, G. Cvetic, R. Kogerler, and I. Kondrashuk, “Nearly perturbative lattice-motivated QCD coupling with zero IR limit”, J. Phys. G 45 no. 3, (2018) 035001, arXiv:1703.01321 [hep-ph].
- M. P. Bellon and P. J. Clavier, “Analyticity domain of a Quantum Field Theory and Accelero-summation”, Lett. Math. Phys. 109 no. 9, (2019) 2003–2011, arXiv:1806.08254 [hep-ph].
- U. Aglietti and Z. Ligeti, “Renormalons and confinement”, Phys. Lett. B 364 (1995) 75, arXiv:hep-ph/9503209.
- M. Chaichian and K. Nishijima, “Does color confinement imply massive gluons?”, Eur. Phys. J. C 47 (2006) 737–743, arXiv:hep-th/0504050.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.