2000 character limit reached
    
  Convergence and collapsing of CAT$(0)$-lattices (2405.01595v1)
    Published 30 Apr 2024 in math.MG, math.DG, and math.GR
  
  Abstract: We study the theory of convergence for CAT$(0)$-lattices (that is groups $\Gamma$ acting geometrically on proper, geodesically complete CAT$(0)$-spaces) and their quotients (CAT$(0)$-orbispaces). We describe some splitting and collapsing phenomena, explaining precisely how these action can degenerate to a possibly non-discrete limit action. Finally, we prove a compactness theorem for the class of compact CAT$(0)$-homology orbifolds, and some applications: an isolation result for flat orbispaces and an entropy-pinching theorem.
- S. Adams and W. Ballmann. Amenable isometry groups of hadamard spaces. Mathematische Annalen, 312:183–196, 1998.
- Cαsuperscript𝐶𝛼C^{\alpha}italic_C start_POSTSUPERSCRIPT italic_α end_POSTSUPERSCRIPT-compactness for manifolds with Ricci curvature and injectivity radius bounded below. J. Differential Geom., 35(2):265–281, 1992.
- Michael T. Anderson. Convergence and rigidity of manifolds under Ricci curvature bounds. Invent. Math., 102(2):429–445, 1990.
- The structure of approximate groups. Publications mathématiques de l’IHÉS, 116, 10 2011.
- M. Bridson and A. Haefliger. Metric spaces of non-positive curvature, volume 319. Springer Science & Business Media, 2013.
- H. Bass and R. Kulkarni. Uniform tree lattices. Journal of the American Mathematical Society, 3(4):843–902, 1990.
- P.E. Caprace. Amenable groups and hadamard spaces with a totally disconnected isometry group. Commentarii Mathematici Helvetici, 84(2):437–455, 2009.
- N. Cavallucci. Topological entropy of the geodesic flow of non-positively curved metric spaces. arXiv preprint arXiv:2105.11774, 2021.
- N. Cavallucci. Continuity of critical exponent of quasiconvex-cocompact groups under gromov–hausdorff convergence. Ergodic Theory and Dynamical Systems, pages 1–33, 2022.
- N. Cavallucci. Entropies of non-positively curved metric spaces. Geometriae Dedicata, 216(5):54, 2022.
- Nicola Cavallucci. A GH-compactification of CAT(0)-groups via totally disconnected, unimodular actions. arXiv preprint arXiv:2307.05640, 2023.
- P.E. Caprace and N. Monod. Isometry groups of non-positively curved spaces: discrete subgroups. J. Topol., 2(4):701–746, 2009.
- P.E. Caprace and N. Monod. Isometry groups of non-positively curved spaces: structure theory. Journal of topology, 2(4):661–700, 2009.
- P.E. Caprace and N. Monod. Erratum and addenda to" isometry groups of non-positively curved spaces: discrete subgroups". arXiv preprint arXiv:1908.10216, 2019.
- N. Cavallucci and A. Sambusetti. Packing and doubling in metric spaces with curvature bounded above. Mathematische Zeitschrift, pages 1–46, 2021.
- N. Cavallucci and A. Sambusetti. Thin actions on cat(0) spaces. arXiv preprint arXiv:2210.01085, 2022.
- Finiteness of CAT(0)0(0)( 0 )-group actions. arXiv preprint arXiv:2304.10763, 2023.
- Discrete groups of packed, non-positively curved, Gromov hyperbolic metric spaces. Geom. Dedicata, 218(2):Paper No. 36, 52, 2024.
- C. Druţu and M. Kapovich. Geometric group theory, volume 63. American Mathematical Soc., 2018.
- P. De La Harpe and E. Ghys. Espaces métriques hyperboliques. Sur les groupes hyperboliques d’après Mikhael Gromov, pages 27–45, 1990.
- F. Dahmani and A. Yaman. Bounded geometry in relatively hyperbolic groups. New York J. Math., 11:89–95, 2005.
- P. Eberlein. Euclidean de rham factor of a lattice of nonpositive curvature. Journal of Differential Geometry, 18(2):209–220, 1983.
- R. Engelking. Dimension theory, volume 19. North-Holland Publishing Company Amsterdam, 1978.
- D.R. Farkas. Crystallographic groups and their mathematics. Rocky Mountain J. Math., 11(4):511–551, 1981.
- The de Rham decomposition theorem for metric spaces. Geom. Funct. Anal., 18(1):120–143, 2008.
- K. Fukaya. Theory of convergence for riemannian orbifolds. Japanese journal of mathematics. New series, 12(1):121–160, 1986.
- The fundamental groups of almost non-negatively curved manifolds. Ann. of Math. (2), 136(2):253–333, 1992.
- M. Gromov. Groups of polynomial growth and expanding maps (with an appendix by jacques tits). Publications Mathématiques de l’IHÉS, 53:53–78, 1981.
- M. Gromov. Metric structures for Riemannian and non-Riemannian spaces. Transl. from the French by Sean Michael Bates. With appendices by M. Katz, P. Pansu, and S. Semmes. Edited by J. LaFontaine and P. Pansu. 3rd printing. Basel: Birkhäuser, 2007.
- L. Guth. Metaphors in systolic geometry. In Proceedings of the International Congress of Mathematicians. Volume II, pages 745–768. Hindustan Book Agency, New Delhi, 2010.
- Some relations between the metric structure and the algebraic structure of the fundamental group in manifolds of nonpositive curvature. Bull. Amer. Math. Soc., 77:545–552, 1971.
- D. Jansen. Notes on pointed gromov-hausdorff convergence. arXiv preprint arXiv:1703.09595, 2017.
- On the structure of RCD spaces with upper curvature bounds. Math. Z., 301(4):3469–3502, 2022.
- C. Lange. Orbifolds from a metric viewpoint. Geom. Dedicata, 209:43–57, 2020.
- J.S. Lee. Totally disconnected groups, p𝑝pitalic_p-adic groups and the Hilbert-Smith conjecture. Commun. Korean Math. Soc., 12(3):691–699, 1997.
- I.J. Leary and A. Minasyan. Commensurating hnn extensions: nonpositive curvature and biautomaticity. Geometry & Topology, 25(4):1819–1860, 2021.
- A. Lytchak and K. Nagano. Topological regularity of spaces with an upper curvature bound. arXiv preprint arXiv:1809.06183, 2018.
- A. Lytchak and K. Nagano. Geodesically complete spaces with an upper curvature bound. Geometric and Functional Analysis, 29(1):295–342, Feb 2019.
- H. Blaine Lawson, Jr. and Shing Tung Yau. Compact manifolds of nonpositive curvature. J. Differential Geometry, 7:211–228, 1972.
- A. Manning. Topological entropy for geodesic flows. Annals of Mathematics, 110(3):567–573, 1979.
- Koichi Nagano. A volume convergence theorem for alexandrov spaces with curvature bounded above. Mathematische Zeitschrift, 241:127–163, 09 2002.
- Koichi Nagano. Volume pinching theorems for CAT(1)CAT1{\rm CAT}(1)roman_CAT ( 1 ) spaces. Amer. J. Math., 144(1):267–285, 2022.
- G. Reviron. Rigidité topologique sous l’hypothèse “entropie majorée” et applications. Comment. Math. Helv., 83(4):815–846, 2008.
- D. Repovs and E.V. Scepin. A proof of the hilbert-smith conjecture for actions by lipschitz maps. Mathematische Annalen, 308:361–364, 1997.
- S. Sabourau. Macroscopic scalar curvature and local collapsing. arXiv preprint arXiv:2006.00663, 2020.
- J.P. Serre. Trees. Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2003. Translated from the French original by John Stillwell, Corrected 2nd printing of the 1980 English translation.
- J. Santos-Rodriguez and S. Zamora. On fundamental groups of rcd spaces. arXiv preprint arXiv:2210.07275, 2022.
- K.-T. Sturm. On the geometry of metric measure spaces 1&2. Acta Math., 196, no.1:65–131 and 133–177, 2006.
- William P. Thurston. Three-dimensional geometry and topology. Vol. 1, volume 35 of Princeton Mathematical Series. Princeton University Press, Princeton, NJ, 1997.
- C.T. Yang. p-adic transformation groups. Michigan Mathematical Journal, 7(3):201–218, 1960.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.