Papers
Topics
Authors
Recent
2000 character limit reached

Reorthogonalized Pythagorean variants of block classical Gram-Schmidt (2405.01298v3)

Published 2 May 2024 in math.NA and cs.NA

Abstract: Block classical Gram-Schmidt (BCGS) is commonly used for orthogonalizing a set of vectors $X$ in distributed computing environments due to its favorable communication properties relative to other orthogonalization approaches, such as modified Gram-Schmidt or Householder. However, it is known that BCGS (as well as recently developed low-synchronization variants of BCGS) can suffer from a significant loss of orthogonality in finite-precision arithmetic, which can contribute to instability and inaccurate solutions in downstream applications such as $s$-step Krylov subspace methods. A common solution to improve the orthogonality among the vectors is reorthogonalization. Focusing on the "Pythagorean" variant of BCGS, introduced in [E. Carson, K. Lund, & M. Rozlo\v{z}n\'{i}k. SIAM J. Matrix Anal. Appl. 42(3), pp. 1365--1380, 2021], which guarantees an $O(\varepsilon)\kappa2(X)$ bound on the loss of orthogonality as long as $O(\varepsilon)\kappa2(X)<1$, where $\varepsilon$ denotes the unit roundoff, we introduce and analyze two reorthogonalized Pythagorean BCGS variants. These variants feature favorable communication properties, with asymptotically two synchronization points per block column, as well as an improved $O(\varepsilon)$ bound on the loss of orthogonality. Our bounds are derived in a general fashion to additionally allow for the analysis of mixed-precision variants. We verify our theoretical results with a panel of test matrices and experiments from a new version of the \texttt{BlockStab} toolbox.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (27)
  1. Communication lower bounds and optimal algorithms for numerical linear algebra. Acta Numer., 23(2014):1–155, 2014. doi:10.1017/S0962492914000038.
  2. J. L. Barlow and A. Smoktunowicz. Reorthogonalized block classical Gram-Schmidt. Numer. Math., 123:395–423, 2013. doi:10.1007/s00211-012-0496-2.
  3. Low-synch Gram–Schmidt with delayed reorthogonalization for Krylov solvers. Parallel Computing, 112:102940, 2022. doi:10.1016/j.parco.2022.102940.
  4. A modular framework for the backward error analysis of GMRES. Technical Report hal-04525918, HAL science ouverte, 2024. URL: https://hal.science/hal-04525918.
  5. E. C. Carson. Communication-Avoiding Krylov Subspace Methods in Theory and Practice. PhD thesis, Department of Computer Science, University of California, Berkeley, 2015. URL: http://escholarship.org/uc/item/6r91c407.
  6. On the loss of orthogonality of low-synchronization variants of reorthogonalized block Gram-Schmidt. Technical report, In preparation, 2024.
  7. The stability of block variants of classical Gram-Schmidt. SIAM J. Matrix Anal. Appl., 42(3):1365–1380, 2021. doi:10.1137/21M1394424.
  8. Block Gram-Schmidt algorithms and their stability properties. Linear Algebra Appl., 638(20):150–195, 2022. doi:10.1016/j.laa.2021.12.017.
  9. A Second Course in Linear Algebra, 2017. URL: https://www.cambridge.org/highereducation/books/a-second-course-in-linear-algebra/C52F492B0DD32D465D209EE47904D76E, doi:10.1017/9781316218419.
  10. Rounding error analysis of the classical Gram-Schmidt orthogonalization process. Numer. Math., 101:87–100, 2005. doi:10.1007/s00211-005-0615-4.
  11. Matrix Computations. Johns Hopkins Studies in the Mathematical Sciences. Johns Hopkins University Press, Baltimore, 4 edition, 2013.
  12. N. J. Higham. Accuracy and stability of numerical algorithms. Society for Industrial and Applied Mathematics, Philadelphia, 2nd ed edition, 2002.
  13. M. Hoemmen. Communication-avoiding Krylov subspace methods. PhD thesis, Department of Computer Science, University of California at Berkeley, 2010. URL: http://www2.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-37.pdf.
  14. K. Lund. Adaptively restarted block Krylov subspace methods with low-synchronization skeletons. Numer Algor, 93(2):731–764, 2023. doi:10.1007/s11075-022-01437-1.
  15. BlockStab, 2024. URL: https://github.com/katlund/BlockStab.
  16. Backward error analysis of the AllReduce algorithm for householder QR decomposition. Jpn. J. Ind. Appl. Math., 29(1):111–130, 2012. doi:10.1007/s13160-011-0053-x.
  17. E. Oktay. Mixed-precision computations in numerical linear algebra. PhD thesis, Faculty of Mathematics and Physics, Charles University, Prague, 2024.
  18. E. Oktay and E. C. Carson. Using Mixed Precision in Low-Synchronization Reorthogonalized Block Classical Gram-Schmidt. PAMM, 23(1):e202200060, 2023. doi:10.1002/pamm.202200060.
  19. A note on the error analysis of classical Gram-Schmidt. Numer. Math., 105(2):299–313, 2006. doi:10.1007/s00211-006-0042-1.
  20. G. W. Stewart. Block Gram-Schmidt orthogonalization. SIAM J. Sci. Comput., 31(1):761–775, 2008. doi:10.1137/070682563.
  21. Iterated Gauss–Seidel GMRES. SIAM J. Sci. Comput., pages S254–S279, 2023. URL: https://epubs.siam.org/doi/10.1137/22M1491241, doi:10.1137/22M1491241.
  22. Numerical Linear Algebra. SIAM, Philadelphia, 1997.
  23. A numerically stable communication-avoiding s-step GMRES algorithm. Technical Report arXiv:2303.08953, arXiv, 2023. doi:10.48550/arXiv.2303.08953.
  24. Roundoff error analysis of the Cholesky QR2 algorithm. Electron. Trans. Numer. Anal., 44:306–326, 2015. URL: http://www.emis.de/journals/ETNA/vol.44.2015/pp306-326.dir/pp306-326.pdf.
  25. Two-Stage Block Orthogonalization to Improve Performance of s-step GMRES. e-print arXiv:2402.15033, arXiv, 2024. URL: http://arxiv.org/abs/2402.15033, doi:10.48550/arXiv.2402.15033.
  26. Low-synchronization orthogonalization schemes for s-step and pipelined Krylov solvers in Trilinos. In Proc. 2020 SIAM Conf. Parallel Process. Sci. Comput. PP, pages 118–128, 2020. doi:10.1137/1.9781611976137.11.
  27. Q. Zou. A flexible block classical Gram–Schmidt skeleton with reorthogonalization. Numer. Linear Algebra Appl., 30(5):e2491, 2023. doi:10.1002/nla.2491.
Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com
X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: