Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 177 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Machine-learned tuning of artificial Kitaev chains from tunneling-spectroscopy measurements (2405.01240v1)

Published 2 May 2024 in cond-mat.mes-hall

Abstract: We demonstrate reliable machine-learned tuning of quantum-dot-based artificial Kitaev chains to Majorana sweet spots, using the covariance matrix adaptation algorithm. We show that a loss function based on local tunnelling-spectroscopy features of a chain with two additional sensor dots added at its ends provides a reliable metric to navigate parameter space and find points where crossed Andreev reflection and elastic cotunneling between neighbouring sites balance in such a way to yield near-zero-energy modes with very high Majorana quality. We simulate tuning of two- and three-site Kitaev chains, where the loss function is found from calculating the low-energy spectrum of a model Hamiltonian that includes Coulomb interactions and finite Zeeman splitting. In both cases, the algorithm consistently converges towards high-quality sweet spots. Since tunnelling spectroscopy provides one global metric for tuning all on-site potentials simultaneously, this presents a promising way towards tuning longer Kitaev chains, which are required for achieving topological protection of the Majorana modes.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (27)
  1. C. W. J. Beenakker, Search for Majorana fermions in superconductors, Ann. Rev. Cond. Matt. Phys. 4, 113 (2013).
  2. C. W. J. Beenakker, Search for non-Abelian Majorana braiding statistics in superconductors, SciPost Phys. Lect. Notes, 15 (2020).
  3. J. Alicea, New directions in the pursuit of Majorana fermions in solid state systems, Rep. Prog. Phys. 75, 076501 (2012).
  4. A. Y. Kitaev, Unpaired Majorana fermions in quantum wires, Phys.-Usp. 44, 131 (2001).
  5. K. Flensberg, F. von Oppen, and A. Stern, Engineered platforms for topological superconductivity and Majorana zero modes, Nat. Rev. Mater. 6, 944 (2021).
  6. R. M. Lutchyn, J. D. Sau, and S. Das Sarma, Majorana fermions and a topological phase transition in semiconductor-superconductor heterostructures, Phys. Rev. Lett. 105, 077001 (2010).
  7. Y. Oreg, G. Refael, and F. von Oppen, Helical liquids and Majorana bound states in quantum wires, Phys. Rev. Lett. 105, 177002 (2010).
  8. G. Kells, D. Meidan, and P. W. Brouwer, Near-zero-energy end states in topologically trivial spin-orbit coupled superconducting nanowires with a smooth confinement, Phys. Rev. B 86, 100503 (2012).
  9. H. Pan and S. Das Sarma, Physical mechanisms for zero-bias conductance peaks in Majorana nanowires, Phys. Rev. Research 2, 013377 (2020).
  10. S. Das Sarma and H. Pan, Disorder-induced zero-bias peaks in Majorana nanowires, Phys. Rev. B 103, 195158 (2021).
  11. J. Cayao and P. Burset, Confinement-induced zero-bias peaks in conventional superconductor hybrids, Phys. Rev. B 104, 134507 (2021).
  12. J. D. Sau and S. D. Sarma, Realizing a robust practical Majorana chain in a quantum-dot-superconductor linear array, Nat. Commun. 3, 964 (2012).
  13. M. Leijnse and K. Flensberg, Parity qubits and poor man’s Majorana bound states in double quantum dots, Phys. Rev. B 86, 134528 (2012).
  14. A. Tsintzis, R. S. Souto, and M. Leijnse, Creating and detecting poor man’s Majorana bound states in interacting quantum dots, Phys. Rev. B 106, L201404 (2022).
  15. R. S. Souto and R. Aguado, Subgap states in semiconductor-superconductor devices for quantum technologies: Andreev qubits and minimal Majorana chains, arXiv:2404.06592 (2024).
  16. M. Thamm and B. Rosenow, Machine learning optimization of Majorana hybrid nanowires, Phys. Rev. Lett. 130, 116202 (2023).
  17. E. Prada, R. Aguado, and P. San-Jose, Measuring Majorana nonlocality and spin structure with a quantum dot, Phys. Rev. B 96, 085418 (2017).
  18. D. J. Clarke, Experimentally accessible topological quality factor for wires with zero energy modes, Phys. Rev. B 96, 201109 (2017).
  19. N. Hansen, The CMA evolution strategy: A tutorial, arXiv:1604.00772 (2016).
  20. N. Hansen and A. Ostermeier, Completely derandomized self-adaptation in evolution strategies, Evol. Comput. 9, 159 (2001).
  21. N. Hansen, S. D. Müller, and P. Koumoutsakos, Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES), Evol. Comput. 11, 1 (2003).
  22. Including small Coulomb interactions on the proximitized dots does not change the qualitative results [33].
  23. We use the cma Python library from pypi.org/project/cma.
  24. N. Sedlmayr and C. Bena, Visualizing Majorana bound states in one and two dimensions using the generalized Majorana polarization, Phys. Rev. B 92, 115115 (2015).
  25. D. Sticlet, C. Bena, and P. Simon, Spin and Majorana polarization in topological superconducting wires, Phys. Rev. Lett. 108, 096802 (2012).
  26. S. V. Aksenov, A. O. Zlotnikov, and M. S. Shustin, Strong Coulomb interactions in the problem of Majorana modes in a wire of the nontrivial topological class BDI, Phys. Rev. B 101, 125431 (2020).
  27. Although such residual δ⁢Ee⁢o𝛿subscript𝐸𝑒𝑜\delta E_{eo}italic_δ italic_E start_POSTSUBSCRIPT italic_e italic_o end_POSTSUBSCRIPT would still translate into a relatively short upper-bound time scale for “Majorana manipulation,” it lies well within the resolution of an actual tunnelling-spectroscopy experiment, likely making it impossible to resolve such small energy splitting anyway. Furthermore, the automated tuning found here could serve as the starting point for a finer search using other methods.
Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: